ﻻ يوجد ملخص باللغة العربية
We demonstrate acousto-optic phase modulators in X-cut lithium niobate films on sapphire, detailing the dependence of the piezoelectric and optomechanical coupling coefficients on the crystal orientation. This new platform supports highly confined, strongly piezoelectric mechanical waves without suspensions, making it a promising candidate for broadband and efficient integrated acousto-optic devices, circuits, and systems.
Acousto-optic interactions involving propagating phonons can break the time-reversal and frequency-modulation symmetry of light. However, conventional acousto-optic modulators based on bulk materials have frequency bandwidth limited to hundreds of me
We theoretically investigate the use of Rayleigh surface acoustic waves (SAWs) for refractive index modulation in optical waveguides consisting of amorphous dielectrics. Considering low-loss Si$_3$N$_4$ waveguides with a standard core cross section o
Many technologies in quantum photonics require cryogenic conditions to operate. However, the underlying platform behind active components such as switches, modulators and phase shifters must be compatible with these operating conditions. To address t
Many applications of metasurfaces require an ability to dynamically change their properties in time domain. Electrical tuning techniques are of particular interest, since they pave a way to on-chip integration of metasurfaces with optoelectronic devi
Superconducting cavity electro-optics (EO) presents a promising route to coherently convert microwave and optical photons and distribute quantum entanglement between superconducting circuits over long-distance through an optical network. High EO conv