ترغب بنشر مسار تعليمي؟ اضغط هنا

SEEK: Segmented Embedding of Knowledge Graphs

332   0   0.0 ( 0 )
 نشر من قبل Wentao Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, knowledge graph embedding becomes a pretty hot research topic of artificial intelligence and plays increasingly vital roles in various downstream applications, such as recommendation and question answering. However, existing methods for knowledge graph embedding can not make a proper trade-off between the model complexity and the model expressiveness, which makes them still far from satisfactory. To mitigate this problem, we propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity. Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations. It is noteworthy that owing to the general and elegant design of scoring functions, our framework can incorporate many famous existing methods as special cases. Moreover, extensive experiments on public benchmarks demonstrate the efficiency and effectiveness of our framework. Source codes and data can be found at url{https://github.com/Wentao-Xu/SEEK}.



قيم البحث

اقرأ أيضاً

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. Howev er, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.
Knowledge graph embedding is an important task and it will benefit lots of downstream applications. Currently, deep neural networks based methods achieve state-of-the-art performance. However, most of these existing methods are very complex and need much time for training and inference. To address this issue, we propose a simple but effective atrous convolution based knowledge graph embedding method. Compared with existing state-of-the-art methods, our method has following main characteristics. First, it effectively increases feature interactions by using atrous convolutions. Second, to address the original information forgotten issue and vanishing/exploding gradient issue, it uses the residual learning method. Third, it has simpler structure but much higher parameter efficiency. We evaluate our method on six benchmark datasets with different evaluation metrics. Extensive experiments show that our model is very effective. On these diverse datasets, it achieves better results than the compared state-of-the-art methods on most of evaluation metrics. The source codes of our model could be found at https://github.com/neukg/AcrE.
Knowledge Graph (KG) embedding is a fundamental problem in data mining research with many real-world applications. It aims to encode the entities and relations in the graph into low dimensional vector space, which can be used for subsequent algorithm s. Negative sampling, which samples negative triplets from non-observed ones in the training data, is an important step in KG embedding. Recently, generative adversarial network (GAN), has been introduced in negative sampling. By sampling negative triplets with large scores, these methods avoid the problem of vanishing gradient and thus obtain better performance. However, using GAN makes the original model more complex and hard to train, where reinforcement learning must be used. In this paper, motivated by the observation that negative triplets with large scores are important but rare, we propose to directly keep track of them with the cache. However, how to sample from and update the cache are two important questions. We carefully design the solutions, which are not only efficient but also achieve a good balance between exploration and exploitation. In this way, our method acts as a distilled version of previous GA-based methods, which does not waste training time on additional parameters to fit the full distribution of negative triplets. The extensive experiments show that our method can gain significant improvement in various KG embedding models, and outperform the state-of-the-art negative sampling methods based on GAN.
Learning knowledge graph (KG) embeddings has received increasing attention in recent years. Most embedding models in literature interpret relations as linear or bilinear mapping functions to operate on entity embeddings. However, we find that such re lation-level modeling cannot capture the diverse relational structures of KGs well. In this paper, we propose a novel edge-centric embedding model TransEdge, which contextualizes relation representations in terms of specific head-tail entity pairs. We refer to such contextualized representations of a relation as edge embeddings and interpret them as translations between entity embeddings. TransEdge achieves promising performance on different prediction tasks. Our experiments on benchmark datasets indicate that it obtains the state-of-the-art results on embedding-based entity alignment. We also show that TransEdge is complementary with conventional entity alignment methods. Moreover, it shows very competitive performance on link prediction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا