ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of COVID-19 spread curves integrating global data and borrowing information

94   0   0.0 ( 0 )
 نشر من قبل Se Yoon Lee
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Currently, novel coronavirus disease 2019 (COVID-19) is a big threat to global health. The rapid spread of the virus has created pandemic, and countries all over the world are struggling with a surge in COVID-19 infected cases. There are no drugs or other therapeutics approved by the US Food and Drug Administration to prevent or treat COVID-19: information on the disease is very limited and scattered even if it exists. This motivates the use of data integration, combining data from diverse sources and eliciting useful information with a unified view of them. In this paper, we propose a Bayesian hierarchical model that integrates global data for real-time prediction of infection trajectory for multiple countries. Because the proposed model takes advantage of borrowing information across multiple countries, it outperforms an existing individual country-based model. As fully Bayesian way has been adopted, the model provides a powerful predictive tool endowed with uncertainty quantification. Additionally, a joint variable selection technique has been integrated into the proposed modeling scheme, which aimed to identify possible country-level risk factors for severe disease due to COVID-19.



قيم البحث

اقرأ أيضاً

The global COVID-19 pandemic has led to the online proliferation of health-, political-, and conspiratorial-based misinformation. Understanding the reach and belief in this misinformation is vital to managing this crisis, as well as future crises. Th e results from our global survey finds a troubling reach of and belief in COVID-related misinformation, as well as a correlation with those that primarily consume news from social media, and, in the United States, a strong correlation with political leaning.
A finite mixture model is used to learn trends from the currently available data on coronavirus (COVID-19). Data on the number of confirmed COVID-19 related cases and deaths for European countries and the United States (US) are explored. A semi-super vised clustering approach with positive equivalence constraints is used to incorporate country and state information into the model. The analysis of trends in the rates of cases and deaths is carried out jointly using a mixture of multivariate Gaussian non-linear regression models with a mean trend specified using a generalized logistic function. The optimal number of clusters is chosen using the Bayesian information criterion. The resulting clusters provide insight into different mitigation strategies adopted by US states and European countries. The obtained results help identify the current relative standing of individual states and show a possible future if they continue with the chosen mitigation technique
We propose a general Bayesian approach to modeling epidemics such as COVID-19. The approach grew out of specific analyses conducted during the pandemic, in particular an analysis concerning the effects of non-pharmaceutical interventions (NPIs) in re ducing COVID-19 transmission in 11 European countries. The model parameterizes the time varying reproduction number $R_t$ through a regression framework in which covariates can e.g be governmental interventions or changes in mobility patterns. This allows a joint fit across regions and partial pooling to share strength. This innovation was critical to our timely estimates of the impact of lockdown and other NPIs in the European epidemics, whose validity was borne out by the subsequent course of the epidemic. Our framework provides a fully generative model for latent infections and observations deriving from them, including deaths, cases, hospitalizations, ICU admissions and seroprevalence surveys. One issue surrounding our models use during the COVID-19 pandemic is the confounded nature of NPIs and mobility. We use our framework to explore this issue. We have open sourced an R package epidemia implementing our approach in Stan. Versions of the model are used by New York State, Tennessee and Scotland to estimate the current situation and make policy decisions.
In this paper, we build a mechanistic system to understand the relation between a reduction in human mobility and Covid-19 spread dynamics within New York City. To this end, we propose a multivariate compartmental model that jointly models smartphone mobility data and case counts during the first 90 days of the epidemic. Parameter calibration is achieved through the formulation of a general Bayesian hierarchical model to provide uncertainty quantification of resulting estimates. The open-source probabilistic programming language Stan is used for the requisite computation. Through sensitivity analysis and out-of-sample forecasting, we find our simple and interpretable model provides evidence that reductions in human mobility altered case dynamics.
What is the impact of COVID-19 on South Africa? This paper envisages assisting researchers and decision-makers in battling the COVID-19 pandemic focusing on South Africa. This paper focuses on the spread of the disease by applying heatmap retrieval o f hotspot areas and spatial analysis is carried out using the Moran index. For capturing spatial autocorrelation between the provinces of South Africa, the adjacent, as well as the geographical distance measures, are used as a weight matrix for both absolute and relative counts. Furthermore, generalized logistic growth curve modeling is used for the prediction of the COVID-19 spread. We expect this data-driven modeling to provide some insights into hotspot identification and timeous action controlling the spread of the virus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا