ترغب بنشر مسار تعليمي؟ اضغط هنا

An Information Bottleneck Approach for Controlling Conciseness in Rationale Extraction

107   0   0.0 ( 0 )
 نشر من قبل Bhargavi Paranjape
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Decisions of complex language understanding models can be rationalized by limiting their inputs to a relevant subsequence of the original text. A rationale should be as concise as possible without significantly degrading task performance, but this balance can be difficult to achieve in practice. In this paper, we show that it is possible to better manage this trade-off by optimizing a bound on the Information Bottleneck (IB) objective. Our fully unsupervised approach jointly learns an explainer that predicts sparse binary masks over sentences, and an end-task predictor that considers only the extracted rationale. Using IB, we derive a learning objective that allows direct control of mask sparsity levels through a tunable sparse prior. Experiments on ERASER benchmark tasks demonstrate significant gains over norm-minimization techniques for both task performance and agreement with human rationales. Furthermore, we find that in the semi-supervised setting, a modest amount of gold rationales (25% of training examples) closes the gap with a model that uses the full input.



قيم البحث

اقرأ أيضاً

The inference of causal relationships using observational data from partially observed multivariate systems with hidden variables is a fundamental question in many scientific domains. Methods extracting causal information from conditional independenc ies between variables of a system are common tools for this purpose, but are limited in the lack of independencies. To surmount this limitation, we capitalize on the fact that the laws governing the generative mechanisms of a system often result in substructures embodied in the generative functional equation of a variable, which act as sufficient statistics for the influence that other variables have on it. These functional sufficient statistics constitute intermediate hidden variables providing new conditional independencies to be tested. We propose to use the Information Bottleneck method, a technique commonly applied for dimensionality reduction, to find underlying sufficient sets of statistics. Using these statistics we formulate new additional rules of causal orientation that provide causal information not obtainable from standard structure learning algorithms, which exploit only conditional independencies between observable variables. We validate the use of sufficient statistics for structure learning both with simulated systems built to contain specific sufficient statistics and with benchmark data from regulatory rules previously and independently proposed to model biological signal transduction networks.
98 - Jiawei Shao , Yuyi Mao , 2021
This paper investigates task-oriented communication for edge inference, where a low-end edge device transmits the extracted feature vector of a local data sample to a powerful edge server for processing. It is critical to encode the data into an info rmative and compact representation for low-latency inference given the limited bandwidth. We propose a learning-based communication scheme that jointly optimizes feature extraction, source coding, and channel coding in a task-oriented manner, i.e., targeting the downstream inference task rather than data reconstruction. Specifically, we leverage an information bottleneck (IB) framework to formalize a rate-distortion tradeoff between the informativeness of the encoded feature and the inference performance. As the IB optimization is computationally prohibitive for the high-dimensional data, we adopt a variational approximation, namely the variational information bottleneck (VIB), to build a tractable upper bound. To reduce the communication overhead, we leverage a sparsity-inducing distribution as the variational prior for the VIB framework to sparsify the encoded feature vector. Furthermore, considering dynamic channel conditions in practical communication systems, we propose a variable-length feature encoding scheme based on dynamic neural networks to adaptively adjust the activated dimensions of the encoded feature to different channel conditions. Extensive experiments evidence that the proposed task-oriented communication system achieves a better rate-distortion tradeoff than baseline methods and significantly reduces the feature transmission latency in dynamic channel conditions.
Recent Quality Estimation (QE) models based on multilingual pre-trained representations have achieved very competitive results when predicting the overall quality of translated sentences. Predicting translation errors, i.e. detecting specifically whi ch words are incorrect, is a more challenging task, especially with limited amounts of training data. We hypothesize that, not unlike humans, successful QE models rely on translation errors to predict overall sentence quality. By exploring a set of feature attribution methods that assign relevance scores to the inputs to explain model predictions, we study the behaviour of state-of-the-art sentence-level QE models and show that explanations (i.e. rationales) extracted from these models can indeed be used to detect translation errors. We therefore (i) introduce a novel semi-supervised method for word-level QE and (ii) propose to use the QE task as a new benchmark for evaluating the plausibility of feature attribution, i.e. how interpretable model explanations are to humans.
The multi-format information extraction task in the 2021 Language and Intelligence Challenge is designed to comprehensively evaluate information extraction from different dimensions. It consists of an multiple slots relation extraction subtask and tw o event extraction subtasks that extract events from both sentence-level and document-level. Here we describe our system for this multi-format information extraction competition task. Specifically, for the relation extraction subtask, we convert it to a traditional triple extraction task and design a voting based method that makes full use of existing models. For the sentence-level event extraction subtask, we convert it to a NER task and use a pointer labeling based method for extraction. Furthermore, considering the annotated trigger information may be helpful for event extraction, we design an auxiliary trigger recognition model and use the multi-task learning mechanism to integrate the trigger features into the event extraction model. For the document-level event extraction subtask, we design an Encoder-Decoder based method and propose a Transformer-alike decoder. Finally,our system ranks No.4 on the test set leader-board of this multi-format information extraction task, and its F1 scores for the subtasks of relation extraction, event extractions of sentence-level and document-level are 79.887%, 85.179%, and 70.828% respectively. The codes of our model are available at {https://github.com/neukg/MultiIE}.
Open Information Extraction (OIE) is the task of the unsupervised creation of structured information from text. OIE is often used as a starting point for a number of downstream tasks including knowledge base construction, relation extraction, and que stion answering. While OIE methods are targeted at being domain independent, they have been evaluated primarily on newspaper, encyclopedic or general web text. In this article, we evaluate the performance of OIE on scientific texts originating from 10 different disciplines. To do so, we use two state-of-the-art OIE systems applying a crowd-sourcing approach. We find that OIE systems perform significantly worse on scientific text than encyclopedic text. We also provide an error analysis and suggest areas of work to reduce errors. Our corpus of sentences and judgments are made available.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا