ﻻ يوجد ملخص باللغة العربية
We compare different models for low resource multi-task sequence tagging that leverage dependencies between label sequences for different tasks. Our analysis is aimed at datasets where each example has labels for multiple tasks. Current approaches use either a separate model for each task or standard multi-task learning to learn shared feature representations. However, these approaches ignore correlations between label sequences, which can provide important information in settings with small training datasets. To analyze which scenarios can profit from modeling dependencies between labels in different tasks, we revisit dynamic conditional random fields (CRFs) and combine them with deep neural networks. We compare single-task, multi-task and dynamic CRF setups for three diverse datasets at both sentence and document levels in English and German low resource scenarios. We show that including silver labels from pretrained part-of-speech taggers as auxiliary tasks can improve performance on downstream tasks. We find that especially in low-resource scenarios, the explicit modeling of inter-dependencies between task predictions outperforms single-task as well as standard multi-task models.
Many domain adaptation approaches rely on learning cross domain shared representations to transfer the knowledge learned in one domain to other domains. Traditional domain adaptation only considers adapting for one task. In this paper, we explore mul
We study three general multi-task learning (MTL) approaches on 11 sequence tagging tasks. Our extensive empirical results show that in about 50% of the cases, jointly learning all 11 tasks improves upon either independent or pairwise learning of the
Techniques for multi-lingual and cross-lingual speech recognition can help in low resource scenarios, to bootstrap systems and enable analysis of new languages and domains. End-to-end approaches, in particular sequence-based techniques, are attractiv
Recent studies have shown that neural models can achieve high performance on several sequence labelling/tagging problems without the explicit use of linguistic features such as part-of-speech (POS) tags. These models are trained only using the charac
Name tagging in low-resource languages or domains suffers from inadequate training data. Existing work heavily relies on additional information, while leaving those noisy annotations unexplored that extensively exist on the web. In this paper, we pro