ﻻ يوجد ملخص باللغة العربية
We investigate the metastable repulsive branch of a mobile impurity coupled to a degenerate Fermi gas via short-range interactions. We show that the quasiparticle lifetime of this repulsive Fermi polaron can be experimentally probed by driving Rabi oscillations between weakly and strongly interacting impurity states. Using a time-dependent variational approach, we find that we can accurately model the impurity Rabi oscillations that were recently measured for repulsive Fermi polarons in both two and three dimensions. Crucially, our theoretical description does not include relaxation processes to the lower-lying attractive branch. Thus, the theory-experiment agreement demonstrates that the quasiparticle lifetime is determined by many-body dephasing within the upper repulsive branch rather than by the metastability of the upper branch itself. Our findings shed light on recent experimental observations of persistent repulsive correlations, and have important consequences for the nature and stability of the strongly repulsive Fermi gas.
We present controlled numerical results for the ground state spectral function of the resonant Fermi polaron in three dimensions. We establish the existence of a dark continuum---a region of anomalously low spectral weight between the narrow polaron
We study the ground state and excitations of a one-dimensional trapped polarized Fermi gas interacting with a single impurity. First, we study the tunnelling dynamics of the impurity through a potential barrier, such as one effectively created by a d
We consider the highly spin-imbalanced limit of a two-component Fermi gas, where there is a small density of $downarrow$ impurities attractively interacting with a sea of $uparrow$ fermions. In the single-impurity limit at zero temperature, there exi
Ferromagnetism is a manifestation of strong repulsive interactions between itinerant fermions in condensed matter. Whether short-ranged repulsion alone is sufficient to stabilize ferromagnetic correlations in the absence of other effects, like peculi
Recent experiments have revitalized the interest in a Fermi gas of ultracold atoms with strong repulsive interactions. In spite of its seeming simplicity, this system exhibits a complex behavior, resulting from the competing action of two distinct in