ﻻ يوجد ملخص باللغة العربية
In this paper, we propose and analyze an abstract stabilized mixed finite element framework that can be applied to nonlinear incompressible elasticity problems. In the abstract stabilized framework, we prove that any mixed finite element method that satisfies the discrete inf-sup condition can be modified so that it is stable and optimal convergent as long as the mixed continuous problem is stable. Furthermore, we apply the abstract stabilized framework to nonlinear incompressible elasticity problems and present numerical experiments to verify the theoretical results.
In this paper, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) to first solving a nonlinear poroelasticity problem. The arising system consists of a nonlinear pressure equation and a nonlinear stres
An interface/boundary-unfitted eXtended hybridizable discontinuous Galerkin (X-HDG) method of arbitrary order is proposed for linear elasticity interface problems on unfitted meshes with respect to the interface and domain boundary. The method uses p
We propose a family of mixed finite element that is robust for the nearly incompressible strain gradient model, which is a fourth order singular perturbation elliptic system. The element is similar to the Taylor-Hood element in the Stokes flow. Using
We propose a Discontinuous Galerkin method for the Poisson equation on polygonal tessellations in two dimensions, stabilized by penalizing, locally in each element $K$, a residual term involving the fluxes, measured in the norm of the dual of $H^1(K)
In this work we propose and analyze a novel Hybrid High-Order discretization of a class of (linear and) nonlinear elasticity models in the small deformation regime which are of common use in solid mechanics. The proposed method is valid in two and th