ﻻ يوجد ملخص باللغة العربية
The COVID-19 outbreak was announced as a global pandemic by the World Health Organisation in March 2020 and has affected a growing number of people in the past few weeks. In this context, advanced artificial intelligence techniques are brought to the fore in responding to fight against and reduce the impact of this global health crisis. In this study, we focus on developing some potential use-cases of intelligent speech analysis for COVID-19 diagnosed patients. In particular, by analysing speech recordings from these patients, we construct audio-only-based models to automatically categorise the health state of patients from four aspects, including the severity of illness, sleep quality, fatigue, and anxiety. For this purpose, two established acoustic feature sets and support vector machines are utilised. Our experiments show that an average accuracy of .69 obtained estimating the severity of illness, which is derived from the number of days in hospitalisation. We hope that this study can foster an extremely fast, low-cost, and convenient way to automatically detect the COVID-19 disease.
The INTERSPEECH 2021 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the COVID-19 Cough and COVID-19 Speech Sub-Challenges, a binary classificati
In the break of COVID-19 pandemic, mass testing has become essential to reduce the spread of the virus. Several recent studies suggest that a significant number of COVID-19 patients display no physical symptoms whatsoever. Therefore, it is unlikely t
Phonation, or the vibration of the vocal folds, is the primary source of vocalization in the production of voiced sounds by humans. It is a complex bio-mechanical process that is highly sensitive to changes in the speakers respiratory parameters. Sin
Cross-speaker style transfer (CSST) in text-to-speech (TTS) synthesis aims at transferring a speaking style to the synthesised speech in a target speakers voice. Most previous CSST approaches rely on expensive high-quality data carrying desired speak
Background: The inability to test at scale has become humanitys Achilles heel in the ongoing war against the COVID-19 pandemic. A scalable screening tool would be a game changer. Building on the prior work on cough-based diagnosis of respiratory dise