ﻻ يوجد ملخص باللغة العربية
Adjacent dyadic systems are pivotal in analysis and related fields to study continuous objects via collections of dyadic ones. In our prior work (joint with Jiang, Olson and Wei) we describe precise necessary and sufficient conditions for two dyadic systems on the real line to be adjacent. Here we extend this work to all dimensions, which turns out to have many surprising difficulties due to the fact that $d+1$, not $2^d$, grids is the optimal number in an adjacent dyadic system in $mathbb{R}^d$. As a byproduct, we show that a collection of $d+1$ dyadic systems in $mathbb{R}^d$ is adjacent if and only if the projection of any two of them onto any coordinate axis are adjacent on $mathbb{R}$. The underlying geometric structures that arise in this higher dimensional generalization are interesting objects themselves, ripe for future study; these lead us to a compact, geometric description of our main result. We describe these structures, along with what adjacent dyadic (and $n$-adic, for any $n$) systems look like, from a variety of contexts, relating them to previous work, as well as illustrating a specific example.
In this paper, we prove an $L^2-L^2-L^2$ decay estimate for a trilinear oscillatory integral of convolution type in $mathbb{R}^d,$ which recovers the earlier result of Li (2013) when $d=1.$ We discuss the sharpness of our result in the $d=2$ case. Ou
The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows fr
Here we present a method of constructing steerable wavelet frames in $L_2(mathbb{R}^d)$ that generalizes and unifies previous approaches, including Simoncellis pyramid and Riesz wavelets. The motivation for steerable wavelets is the need to more accu
Bernstein inequalities and inverse theorems are a recent development in the theory of radial basis function(RBF) approximation. The purpose of this paper is to extend what is known by deriving $L^p$ Bernstein inequalities for RBF networks on $mathbb{
We show that, if $bin L^1(0,T;L^1_{mathrm{loc}}(mathbb{R}))$ has spatial derivative in the John-Nirenberg space $mathrm{BMO}(mathbb{R})$, then it generalizes a unique flow $phi(t,cdot)$ which has an $A_infty(mathbb R)$ density for each time $tin [0,T