ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam-Normal Single Spin Asymmetry in Elastic Electron Scattering off $^{28}$Si and $^{90}$Zr

457   0   0.0 ( 0 )
 نشر من قبل Concettina Sfienti Prof. Dr.
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a new measurement of the beam-normal single spin asymmetry $A_{mathrm{n}}$ in the elastic scattering of 570 MeV transversely polarized electrons off $^{28}$Si and $^{90}$Zr at $Q^{2}=0.04, mathrm{GeV}^2/c^2$. The studied kinematics allow for a comprehensive comparison with former results on $^{12}$C. No significant mass dependence of the beam-normal single spin asymmetry is observed in the mass regime from $^{12}$C to $^{90}$Zr.



قيم البحث

اقرأ أيضاً

A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of t he beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of theta_lab = 7.9 degrees and a mean energy of 1.149 GeV. The asymmetry result is B_n = -5.194 +- 0.067 (stat) +- 0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles (theta_lab -> 0) where they should be most reliable.
We report measurements of the parity-conserving beam-normal single-spin elastic scattering asymmetries $B_n$ on $^{12}$C and $^{27}$Al, obtained with an electron beam polarized transverse to its momentum direction. These measurements add an additiona l kinematic point to a series of previous measurements of $B_n$ on $^{12}$C and provide a first measurement on $^{27}$Al. The experiment utilized the Qweak apparatus at Jefferson Lab with a beam energy of 1.158 GeV. The average lab scattering angle for both targets was 7.7 degrees, and the average $Q^2$ for both targets was 0.02437 GeV$^2$ (Q=0.1561 GeV). The asymmetries are $B_n$ = -10.68 $pm$ 0.90 stat) $pm$ 0.57 (syst) ppm for $^{12}$C and $B_n$ = -12.16 $pm$ 0.58 (stat) $pm$ 0.62 (syst) ppm for $^{27}$Al. The results are consistent with theoretical predictions, and are compared to existing data. When scaled by Z/A, the Q-dependence of all the far-forward angle (theta < 10 degrees) data from $^{1}$H to $^{27}$Al can be described by the same slope out to $Q approx 0.35$ GeV. Larger-angle data from other experiments in the same Q range are consistent with a slope about twice as steep.
Quasi-elastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D-state admixture) and on the limits of the Impulse Approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. We measured the beam-target double spin asymmetry for quasi-elastic electron scattering off the deuteron at several beam energies using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double spin asymmetries were measured as a function of photon virtuality , missing momentum, and the angle between the (inferred) spectator neutron and the momentum transfer direction. The results are compared with a recent model that includes Final State Interactions (FSI) using a complete parameterization of nucleon-nucleon scattering, as well as a simplified model using the Plane Wave Impulse Approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta, including the change of the asymmetry due to the contribution of the deuteron D-state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI.
We estimate the target-normal single-spin asymmetry at nearly forward angles in elastic electron-nucleon scattering. In the leading-order approximation, this asymmetry is proportional to the imaginary part of the two-photon exchange (TPE) amplitude, which can be expressed as an integral over the doubly virtual Compton scattering (VVCS) tensor. We develop a model that parametrizes the VVCS tensor for the case of nearly forward scattering angles. Our parametrization ensures a proper normalization of the imaginary part of the TPE amplitude on the well-known forward limit expression, which is given in terms of nucleon structure functions measurable in inelastic electron-nucleon scattering experiments. We discuss applicability limits of our theory and provide target-normal single-spin asymmetry predictions for both elastic electron-proton and electron-neutron scattering.
We study the beam-normal single-spin asymmetry (BNSSA) in high-energy elastic electron scattering from several spin-0 nuclei. Existing theoretical approaches work in the plane-wave formalism and predict the BNSSA to scale as $sim A/Z$ with the atomic number $Z$ and nuclear mass number $A$. While this prediction holds for light and intermediate nuclei, a striking disagreement in both the sign and the magnitude of BNSSA was observed by the PREX collaboration for $^{208}$Pb, coined the PREX puzzle. To shed light on this disagreement, we go beyond the plane-wave approach which neglects Coulomb distortions known to be significant for heavy nuclei. We explicitly investigate the dependence of BNSSA on $A$ and $Z$ by i) including inelastic intermediate states contributions into the Coulomb problem in the form of an optical potential, ii) by accounting for the experimental information on the $A$-dependence of the Compton slope parameter, and iii) giving a thorough account of the uncertainties of the calculation. Despite of these improvements, the PREX puzzle remains unexplained. We discuss further strategies to resolve this riddle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا