ترغب بنشر مسار تعليمي؟ اضغط هنا

QCD Hidden-Color Hexa-diquark in the Central Core of Nuclei

83   0   0.0 ( 0 )
 نشر من قبل Jennifer Rittenhouse West
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Hidden-color configurations are a key prediction of QCD with important physical consequences. In this work we examine a QCD color-singlet configuration in nuclei formed by combining six scalar $[u d]$ diquarks in a strongly bound $rm SU(3)_C$ channel. The resulting hexadiquark state is a charge-2, spin-0, baryon number-4, isospin-0, color-singlet state. It contributes to alpha clustering in light nuclei and to the additional binding energy not saturated by ordinary nuclear forces in he as well as the alpha-nuclei sequence of interest for nuclear astrophysics. We show that the strongly bound combination of six scalar isospin-0 $[ud]$ diquarks within the nuclear wave function - relative to free nucleons - provides a natural explanation of the EMC effect measured by the CLAS collaborations comparison of nuclear parton distribution function ratios for a large range of nuclei. These experiments confirmed that the EMC effect; i.e., the distortion of quark distributions within nuclei, is dominantly identified with the dynamics of neutron-proton (``isophobic) short-range correlations within the nuclear wave function rather than proton-proton or neutron-neutron correlations.



قيم البحث

اقرأ أيضاً

The lightest hidden-bottom tetraquarks in the dynamical diquark model fill an $S$-wave multiplet consisting of 12 isomultiplets. We predict their masses and dominant bottomonium decay channels using a simple 3-parameter Hamiltonian that captures the core fine-structure features of the model, including isospin dependence. The only experimental inputs needed are the corresponding observables for $Z_b(10610)$ and $Z_b(10650)$. The mass of $X_b$, the bottom analogue to $X(3872)$, is highly constrained in this scheme. In addition, using lattice-calculated potentials we predict the location of the center of mass of the $P$-wave multiplet and find that $Y(10860)$ fits well but the newly discovered $Y(10750)$ does not, more plausibly being a $D$-wave bottomonium state. Using similar methods, we also examine the lowest $S$-wave multiplet of 6 $cbar c sbar s$ states, assuming as in earlier work that $X(3915)$ and $Y(4140)$ are members, and predict the masses and dominant charmonium decay modes of the other states. We again use lattice potentials to compute the centers of mass of higher multiplets, and find them to be compatible with the masses of $Y(4626)$ ($1P$) and $X(4700)$ ($2S$), respectively.
The purpose of the present study is to explore the mass spectrum of the hidden charm tetraquark states within a diquark model. Proposing that a tetraquark state is composed of a diquark and an antidiquark, the masses of all possible $[qc][bar{q}bar{c }]$, $[sc][bar{s}bar{c}]$, and $[qc][bar{s}bar{c}]$ $left([sc][bar{q}bar{c}]right)$ hidden charm tetraquark states are systematically calculated by use of an effective Hamiltonian, which contains color, spin, and flavor dependent interactions. Apart from the $X(3872)$, $Z(3900)$, $chi_{c2}(3930)$, and $X(4350)$ which are taken as input to fix the model parameters, the calculated results support that the $chi_{c0}(3860)$, $X(4020)$, $X(4050)$ are $[qc][bar{q}bar{c}]$ states with $I^GJ^{PC}=0^+0^{++}$, $1^+1^{+-}$, and $1^-2^{++}$, respectively, the $chi_{c1}(4274)$ is an $[sc][bar{s}bar{c}]$ state with $I^GJ^{PC}=0^+1^{++}$, the $X(3940)$ is a $[qc][bar{q}bar{c}]$ state with $I^GJ^{PC}=1^-0^{++}$ or $1^-1^{++}$, the $Z_{cs}(3985)^-$ is an $[sc][bar{q}bar{c}]$ state with $J^{P}=0^{+}$ or $1^+$, and the $Z_{cs}(4000)^+$ and $Z_{cs}(4220)^+$ are $[qc][bar{s}bar{c}]$ states with $J^{P}=1^{+}$. Predictions for other possible tetraquark states are also given.
The mass spectrum of hidden charm pentaquark states composed of two diquarks and an antiquark are calculated by use of an effective Hamiltonian which includes explicitly the spin, color, and flavor dependent interactions. The results show that the $P _c(4312)^+$ and $P_c(4440)^+$ states could be explained as hidden charm pentaquark states with isospin and spin-parity $IJ^P=1/2left(3/2^-right)$, the $P_c(4457)^+$ state could be explained as a hidden charm pentaquark state with $IJ^P=1/2left(5/2^-right)$, and the $P_{cs}(4459)^+$ state could be explained as a hidden charm pentaquark state with $IJ^P=0left(1/2^-right)$ or $0left(3/2^-right)$. Predications for the masses of other possible pentaquark states are also given, and the possible decay channels of these hidden charm pentaquark states are discussed.
The propagation of colored quarks through strongly interacting systems, and their subsequent evolution into color-singlet hadrons, are phenomena that showcase unique facets of Quantum Chromodynamics (QCD). Medium-stimulated gluon bremsstrahlung, a fu ndamental QCD process, induces broadening of the transverse momentum of the parton, and creates partonic energy loss manifesting itself in experimental observables that are accessible in high energy interactions in hot and cold systems. The formation of hadrons, which is the dynamical enforcement of the QCD confinement principle, is very poorly understood on the basis of fundamental theory, although detailed models such as the Lund string model or cluster hadronization models can generally be tuned to capture the main features of hadronic final states. With the advent of the technical capability to study hadronic final states from lepton scattering with good particle identification and at high luminosity, a new opportunity has appeared. Study of the characteristics of parton propagation and hadron formation as they unfold within atomic nuclei are now being used to understand the coherence and spatial features of these processes and to refine new experimental tools that will be used in future experiments. Fixed-target data on nuclei with lepton and hadron beams, and collider experiments involving nuclei, all make essential contact with these topics and they elucidate different aspects of these same themes. In this paper, a survey of the most relevant recent data and its potential interpretation will be followed by descriptions of planned experiments at Jefferson Lab following the completion of the 12 GeV upgrade, and feasible measurements at a future Electron-Ion Collider.
171 - M. Alvioli , M. Strikman 2013
Color fluctuations in hadron-hadron collisions are responsible for the presence of inelastic diffraction and lead to distinctive differences between the Gribov picture of high energy scattering and the low energy Glauber picture. We find that color f luctuations give a larger contribution to the fluctuations of the number of wounded nucleons than the fluctuations of the number of nucleons at a given impact parameter. The two contributions for the impact parameter averaged fluctuations are comparable. As a result, standard procedures for selecting peripheral (central) collisions lead to selection of configurations in the projectile which interact with smaller (larger) than average strength. We suggest that studies of pA collisions with a hard trigger may allow to observe effects of color fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا