ترغب بنشر مسار تعليمي؟ اضغط هنا

Rethinking Coherence Modeling: Synthetic vs. Downstream Tasks

107   0   0.0 ( 0 )
 نشر من قبل Tasnim Mohiuddin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although coherence modeling has come a long way in developing novel models, their evaluation on downstream applications for which they are purportedly developed has largely been neglected. With the advancements made by neural approaches in applications such as machine translation (MT), summarization and dialog systems, the need for coherence evaluation of these tasks is now more crucial than ever. However, coherence models are typically evaluated only on synthetic tasks, which may not be representative of their performance in downstream applications. To investigate how representative the synthetic tasks are of downstream use cases, we conduct experiments on benchmarking well-known traditional and neural coherence models on synthetic sentence ordering tasks, and contrast this with their performance on three downstream applications: coherence evaluation for MT and summarization, and next utterance prediction in retrieval-based dialog. Our results demonstrate a weak correlation between the model performances in the synthetic tasks and the downstream applications, {motivating alternate training and evaluation methods for coherence models.



قيم البحث

اقرأ أيضاً

Despite the fast developmental pace of new sentence embedding methods, it is still challenging to find comprehensive evaluations of these different techniques. In the past years, we saw significant improvements in the field of sentence embeddings and especially towards the development of universal sentence encoders that could provide inductive transfer to a wide variety of downstream tasks. In this work, we perform a comprehensive evaluation of recent methods using a wide variety of downstream and linguistic feature probing tasks. We show that a simple approach using bag-of-words with a recently introduced language model for deep context-dependent word embeddings proved to yield better results in many tasks when compared to sentence encoders trained on entailment datasets. We also show, however, that we are still far away from a universal encoder that can perform consistently across several downstream tasks.
Autoregressive language models, pretrained using large text corpora to do well on next word prediction, have been successful at solving many downstream tasks, even with zero-shot usage. However, there is little theoretical understanding of this succe ss. This paper initiates a mathematical study of this phenomenon for the downstream task of text classification by considering the following questions: (1) What is the intuitive connection between the pretraining task of next word prediction and text classification? (2) How can we mathematically formalize this connection and quantify the benefit of language modeling? For (1), we hypothesize, and verify empirically, that classification tasks of interest can be reformulated as sentence completion tasks, thus making language modeling a meaningful pretraining task. With a mathematical formalization of this hypothesis, we make progress towards (2) and show that language models that are $epsilon$-optimal in cross-entropy (log-perplexity) learn features that can linearly solve such classification tasks with $mathcal{O}(sqrt{epsilon})$ error, thus demonstrating that doing well on language modeling can be beneficial for downstream tasks. We experimentally verify various assumptions and theoretical findings, and also use insights from the analysis to design a new objective function that performs well on some classification tasks.
We propose a novel way to handle out of vocabulary (OOV) words in downstream natural language processing (NLP) tasks. We implement a network that predicts useful embeddings for OOV words based on their morphology and on the context in which they appe ar. Our model also incorporates an attention mechanism indicating the focus allocated to the left context words, the right context words or the words characters, hence making the prediction more interpretable. The model is a ``drop-in module that is jointly trained with the downstream tasks neural network, thus producing embeddings specialized for the task at hand. When the task is mostly syntactical, we observe that our model aims most of its attention on surface form characters. On the other hand, for tasks more semantical, the network allocates more attention to the surrounding words. In all our tests, the module helps the network to achieve better performances in comparison to the use of simple random embeddings.
Exposure bias describes the phenomenon that a language model trained under the teacher forcing schema may perform poorly at the inference stage when its predictions are conditioned on its previous predictions unseen from the training corpus. Recently , several generative adversarial networks (GANs) and reinforcement learning (RL) methods have been introduced to alleviate this problem. Nonetheless, a common issue in RL and GANs training is the sparsity of reward signals. In this paper, we adopt two simple strategies, multi-range reinforcing, and multi-entropy sampling, to amplify and denoise the reward signal. Our model produces an improvement over competing models with regards to BLEU scores and road exam, a new metric we designed to measure the robustness against exposure bias in language models.
An important goal of neural architecture search (NAS) is to automate-away the design of neural networks on new tasks in under-explored domains. Motivated by this broader vision for NAS, we study the problem of enabling users to discover the right neu ral operations given data from their specific domain. We introduce a search space of neural operations called XD-Operations that mimic the inductive bias of standard multichannel convolutions while being much more expressive: we prove that XD-operations include many named operations across several application areas. Starting with any standard backbone network such as LeNet or ResNet, we show how to transform it into an architecture search space over XD-operations and how to traverse the space using a simple weight-sharing scheme. On a diverse set of applications--image classification, solving partial differential equations (PDEs), and sequence modeling--our approach consistently yields models with lower error than baseline networks and sometimes even lower error than expert-designed domain-specific approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا