ﻻ يوجد ملخص باللغة العربية
Natural language understanding (NLU) in the context of goal-oriented dialog systems typically includes intent classification and slot labeling tasks. Existing methods to expand an NLU system to new languages use machine translation with slot label projection from source to the translated utterances, and thus are sensitive to projection errors. In this work, we propose a novel end-to-end model that learns to align and predict target slot labels jointly for cross-lingual transfer. We introduce MultiATIS++, a new multilingual NLU corpus that extends the Multilingual ATIS corpus to nine languages across four language families, and evaluate our method using the corpus. Results show that our method outperforms a simple label projection method using fast-align on most languages, and achieves competitive performance to the more complex, state-of-the-art projection method with only half of the training time. We release our MultiATIS++ corpus to the community to continue future research on cross-lingual NLU.
End-to-end text-to-speech (TTS) has shown great success on large quantities of paired text plus speech data. However, laborious data collection remains difficult for at least 95% of the languages over the world, which hinders the development of TTS i
Voice-controlled house-hold devices, like Amazon Echo or Google Home, face the problem of performing speech recognition of device-directed speech in the presence of interfering background speech, i.e., background noise and interfering speech from ano
Recently, end-to-end sequence-to-sequence models for speech recognition have gained significant interest in the research community. While previous architecture choices revolve around time-delay neural networks (TDNN) and long short-term memory (LSTM)
We present a state-of-the-art speech recognition system developed using end-to-end deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional
Measuring performance of an automatic speech recognition (ASR) system without ground-truth could be beneficial in many scenarios, especially with data from unseen domains, where performance can be highly inconsistent. In conventional ASR systems, sev