ﻻ يوجد ملخص باللغة العربية
This paper studies a structured compound stochastic program (SP) involving multiple expectations coupled by nonconvex and nonsmooth functions. We present a successive convex-programming based sampling algorithm and establish its subsequential convergence. We describe stationarity properties of the limit points for several classes of the compound SP. We further discuss probabilistic stopping rules based on the computable error-bound for the algorithm. We present several risk measure minimization problems that can be formulated as such a compound stochastic program; these include generalized deviation optimization problems based on optimized certainty equivalent and buffered probability of exceedance (bPOE), a distributionally robust bPOE optimization problem, and a multiclass classification problem employing the cost-sensitive error criteria with bPOE risk measure.
While many distributed optimization algorithms have been proposed for solving smooth or convex problems over the networks, few of them can handle non-convex and non-smooth problems. Based on a proximal primal-dual approach, this paper presents a new
In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian inf
In this paper, we consider an accelerated method for solving nonconvex and nonsmooth minimization problems. We propose a Bregman Proximal Gradient algorithm with extrapolation(BPGe). This algorithm extends and accelerates the Bregman Proximal Gradien
This paper has two main goals: (a) establish several statistical properties---consistency, asymptotic distributions, and convergence rates---of stationary solutions and values of a class of coupled nonconvex and nonsmoothempirical risk minimization p
We derive equivalent linear and dynamic programs for infinite horizon risk-sensitive control for minimization of the asymptotic growth rate of the cumulative cost.