ﻻ يوجد ملخص باللغة العربية
Multiparty quantum cryptography based on distributed entanglement will find its natural application in the upcoming quantum networks. The security of many multipartite device-independent (DI) protocols, such as DI conference key agreement, relies on bounding the von Neumann entropy of the parties outcomes conditioned on the eavesdroppers information, given the violation of a multipartite Bell inequality. We consider three parties testing the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality and certify the privacy of their outcomes by bounding the conditional entropy of a single partys outcome and the joint conditional entropy of two parties outcomes. From the former bound, we show that genuine multipartite entanglement is necessary to certify the privacy of a partys outcome, while the latter significantly improve previous results. We obtain the entropy bounds thanks to two general results of independent interest. The first one drastically simplifies the quantum setup of an $N$-partite Bell scenario. The second one provides an upper bound on the violation of the MABK inequality by an arbitrary $N$-qubit state, as a function of the states parameters.
The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and frag
It is known that advantage distillation (that is, information reconciliation using two-way communication) improves noise tolerances for quantum key distribution (QKD) setups. Two-way communication is hence also of interest in the device-independent c
We show that the entropy of a message can be tested in a device-independent way. Specifically, we consider a prepare-and-measure scenario with classical or quantum communication, and develop two different methods for placing lower bounds on the commu
We study the impact of finite-size effects on the key rate of continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD). Inspired by the parameter estimation technique developed in [Rupert textit{et al.} Phys. Rev.
In this paper, we report an experiment about the device-independent tests of classical and quantum entropy based on a recent proposal [Phys. Rev. Lett. 115, 110501 (2015)], in which the states are encoded on the polarization of a biphoton system and