ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Fine-tuning Techniques for Pre-trained Cross-lingual Models via Continual Learning

144   0   0.0 ( 0 )
 نشر من قبل Zihan Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, fine-tuning pre-trained language models (e.g., multilingual BERT) to downstream cross-lingual tasks has shown promising results. However, the fine-tuning process inevitably changes the parameters of the pre-trained model and weakens its cross-lingual ability, which leads to sub-optimal performance. To alleviate this problem, we leverage continual learning to preserve the original cross-lingual ability of the pre-trained model when we fine-tune it to downstream tasks. The experimental result shows that our fine-tuning methods can better preserve the cross-lingual ability of the pre-trained model in a sentence retrieval task. Our methods also achieve better performance than other fine-tuning baselines on the zero-shot cross-lingual part-of-speech tagging and named entity recognition tasks.



قيم البحث

اقرأ أيضاً

Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i n pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.
Though the pre-trained contextualized language model (PrLM) has made a significant impact on NLP, training PrLMs in languages other than English can be impractical for two reasons: other languages often lack corpora sufficient for training powerful P rLMs, and because of the commonalities among human languages, computationally expensive PrLM training for different languages is somewhat redundant. In this work, building upon the recent works connecting cross-lingual model transferring and neural machine translation, we thus propose a novel cross-lingual model transferring framework for PrLMs: TreLM. To handle the symbol order and sequence length differences between languages, we propose an intermediate ``TRILayer structure that learns from these differences and creates a better transfer in our primary translation direction, as well as a new cross-lingual language modeling objective for transfer training. Additionally, we showcase an embedding aligning that adversarially adapts a PrLMs non-contextualized embedding space and the TRILayer structure to learn a text transformation network across languages, which addresses the vocabulary difference between languages. Experiments on both language understanding and structure parsing tasks show the proposed framework significantly outperforms language models trained from scratch with limited data in both performance and efficiency. Moreover, despite an insignificant performance loss compared to pre-training from scratch in resource-rich scenarios, our cross-lingual model transferring framework is significantly more economical.
106 - Bo Zheng , Li Dong , Shaohan Huang 2021
Fine-tuning pre-trained cross-lingual language models can transfer task-specific supervision from one language to the others. In this work, we propose to improve cross-lingual fine-tuning with consistency regularization. Specifically, we use example consistency regularization to penalize the prediction sensitivity to four types of data augmentations, i.e., subword sampling, Gaussian noise, code-switch substitution, and machine translation. In addition, we employ model consistency to regularize the models trained with two augment
436 - Yusheng Su , Xu Han , Yankai Lin 2021
Fine-tuning pre-trained language models (PLMs) has demonstrated its effectiveness on various downstream NLP tasks recently. However, in many low-resource scenarios, the conventional fine-tuning strategies cannot sufficiently capture the important sem antic features for downstream tasks. To address this issue, we introduce a novel framework (named CSS-LM) to improve the fine-tuning phase of PLMs via contrastive semi-supervised learning. Specifically, given a specific task, we retrieve positive and negative instances from large-scale unlabeled corpora according to their domain-level and class-level semantic relatedness to the task. We then perform contrastive semi-supervised learning on both the retrieved unlabeled and original labeled instances to help PLMs capture crucial task-related semantic features. The experimental results show that CSS-LM achieves better results than the conventional fine-tuning strategy on a series of downstream tasks with few-shot settings, and outperforms the latest supervised contrastive fine-tuning strategies. Our datasets and source code will be available to provide more details.
153 - Xueqing Liu , Chi Wang 2021
The performance of fine-tuning pre-trained language models largely depends on the hyperparameter configuration. In this paper, we investigate the performance of modern hyperparameter optimization methods (HPO) on fine-tuning pre-trained language mode ls. First, we study and report three HPO algorithms performances on fine-tuning two state-of-the-art language models on the GLUE dataset. We find that using the same time budget, HPO often fails to outperform grid search due to two reasons: insufficient time budget and overfitting. We propose two general strategies and an experimental procedure to systematically troubleshoot HPOs failure cases. By applying the procedure, we observe that HPO can succeed with more appropriate settings in the search space and time budget; however, in certain cases overfitting remains. Finally, we make suggestions for future work. Our implementation can be found in https://github.com/microsoft/FLAML/tree/main/flaml/nlp/.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا