ﻻ يوجد ملخص باللغة العربية
A $d$-dimensional matrix is called emph{$1$-polystochastic} if it is non-negative and the sum over each line equals~$1$. Such a matrix that has a single $1$ in each line and zeros elsewhere is called a emph{$1$-permutation} matrix. A emph{diagonal} of a $d$-dimensional matrix of order $n$ is a choice of $n$ elements, no two in the same hyperplane. The emph{permanent} of a $d$-dimensional matrix is the sum over the diagonals of the product of the elements within the diagonal. For a given order $n$ and dimension $d$, the set of $1$-polystochastic matrices forms a convex polytope that includes the $1$-permutation matrices within its set of vertices. For even $n$ and odd $d$, we give a construction for a class of $1$-permutation matrices with zero permanent. Consequently, we show that the set of $1$-polystochastic matrices with zero permanent contains at least $n^{n^{3/2}(1/2-o(1))}$ $1$-permutation matrices and contains a polytope of dimension at least $cn^{3/2}$ for fixed $c,d$ and even $ntoinfty$. We also provide counterexamples to a conjecture by Taranenko about the location of local extrema of the permanent. For odd $d$, we give a construction of $1$-permutation matrices that decompose into a convex linear sum of positive diagonals. These combine with a theorem of Taranenko to provide counterexamples to a conjecture by Dow and Gibson generalising van der Waerdens conjecture to higher dimensions.
The permanent of a multidimensional matrix is the sum of products of entries over all diagonals. By Mincs conjecture, there exists a reachable upper bound on the permanent of 2-dimensional (0,1)-matrices. In this paper we obtain some generalizations
Let $R$ be a commutative additively idempotent semiring. In this paper, some properties and characterizations for permanents of matrices over $R$ are established, and several inequalities for permanents are given. Also, the adjiont matrices of matrie
In this paper we consider the problem of computing the likelihood of the profile of a discrete distribution, i.e., the probability of observing the multiset of element frequencies, and computing a profile maximum likelihood (PML) distribution, i.e.,
A celebrated result of Morse and Hedlund, stated in 1938, asserts that a sequence $x$ over a finite alphabet is ultimately periodic if and only if, for some $n$, the number of different factors of length $n$ appearing in $x$ is less than $n+1$. Attem
In 1960, Hoffman and Singleton cite{HS60} solved a celebrated equation for square matrices of order $n$, which can be written as $$ (kappa - 1) I_n + J_n - A A^{rm T} = A$$ where $I_n$, $J_n$, and $A$ are the identity matrix, the all one matrix, and