ﻻ يوجد ملخص باللغة العربية
Entity set expansion, aiming at expanding a small seed entity set with new entities belonging to the same semantic class, is a critical task that benefits many downstream NLP and IR applications, such as question answering, query understanding, and taxonomy construction. Existing set expansion methods bootstrap the seed entity set by adaptively selecting context features and extracting new entities. A key challenge for entity set expansion is to avoid selecting ambiguous context features which will shift the class semantics and lead to accumulative errors in later iterations. In this study, we propose a novel iterative set expansion framework that leverages automatically generated class names to address the semantic drift issue. In each iteration, we select one positive and several negative class names by probing a pre-trained language model, and further score each candidate entity based on selected class names. Experiments on two datasets show that our framework generates high-quality class names and outperforms previous state-of-the-art methods significantly.
Linguistic sequence labeling is a general modeling approach that encompasses a variety of problems, such as part-of-speech tagging and named entity recognition. Recent advances in neural networks (NNs) make it possible to build reliable models withou
Entity set expansion and synonym discovery are two critical NLP tasks. Previous studies accomplish them separately, without exploring their interdependencies. In this work, we hypothesize that these two tasks are tightly coupled because two synonymou
In this work, we study the problem of named entity recognition (NER) in a low resource scenario, focusing on few-shot and zero-shot settings. Built upon large-scale pre-trained language models, we propose a novel NER framework, namely SpanNER, which
Recently, there is an effort to extend fine-grained entity typing by using a richer and ultra-fine set of types, and labeling noun phrases including pronouns and nominal nouns instead of just named entity mentions. A key challenge for this ultra-fine
Corpus-based set expansion (i.e., finding the complete set of entities belonging to the same semantic class, based on a given corpus and a tiny set of seeds) is a critical task in knowledge discovery. It may facilitate numerous downstream application