ﻻ يوجد ملخص باللغة العربية
In about last couple of decades, the inference of the violation of the Chandrasekhar mass-limit of white dwarfs from indirect observation is probably a revolutionary discovery in astronomy. Various researchers have already proposed different theories to explain this interesting phenomenon. However, such massive white dwarfs usually possess very little luminosity, and hence they, so far, cannot be detected directly by any observations. We have already proposed that the continuous gravitational wave may be one of the probes to detect them directly, and in the future, various space-based detectors such as LISA, DECIGO, and BBO, should be able to detect many of those white dwarfs (provided they behave like pulsars). In this paper, we address various timescales related to the emission of gravitational as well as dipole radiations. This exploration sets a timescale for the detectors to observe the massive white dwarfs.
After the prediction of many sub- and super-Chandrasekhar (at least a dozen for the latter) limiting mass white dwarfs, hence apparently peculiar class of white dwarfs, from the observations of luminosity of type Ia supernovae, researchers have propo
Recent evidence of super-Chandrasekhar white dwarfs (WDs), from the observations of over-luminous type Ia supernovae (SNeIa), has been a great astrophysical discovery. However, no such massive WDs have so far been observed directly as their luminosit
Over the past couple of decades, researchers have predicted more than a dozen super-Chandrasekhar white dwarfs from the detections of over-luminous type Ia supernovae. It turns out that magnetic fields and rotation can explain such massive white dwar
Recent detection of gravitational wave from nine black hole merger events and one neutron star merger event by LIGO and VIRGO shed a new light in the field of astrophysics. On the other hand, in the past decade, a few super-Chandrasekhar white dwarf
The past four years have seen a scientific revolution through the birth of a new field: gravitational-wave astronomy. The first detection of gravitational waves---recognised by the 2017 Nobel Prize in Physics---provided unprecedented tests of general