ترغب بنشر مسار تعليمي؟ اضغط هنا

An updated estimate of the cosmic radio background and implications for ultra-high-energy photon propagation

96   0   0.0 ( 0 )
 نشر من قبل Iuliana Camelia Nitu Miss
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. C. Nic{t}u




اسأل ChatGPT حول البحث

We present an updated estimate of the cosmic radio background (CRB) and the corresponding attenuation lengths for ultra-high energy photons. This new estimate provides associated uncertainties as a function of frequency derived from observational constraints on key physical parameters. We also present the expected variation in the spectrum of the CRB as a function of these parameters, as well as accounting for the expected variation in spectral index among the population of radio galaxies. The new estimate presented in this work shows better agreement with observational constraints from radio source-count measurements than previous calculations. In the energy regime where we expect cosmogenic photons dominantly attenuated by the CRB, our calculation of the attenuation length differs from previous estimates by a factor of up to 3, depending on energy and the specific model for comparison. These results imply a decrease in the expected number of cosmogenic photons with energies $sim 10^{19}-10^{20}$ eV.



قيم البحث

اقرأ أيضاً

(Abridged) Recent results from the Pierre Auger Observatory (PAO) indicate that the composition of ultra-high-energy cosmic rays (UHECRs) with energies above $10^{19}$ eV may be dominated by heavy nuclei. An important question is whether the distribu tion of arrival directions for such UHECR nuclei can exhibit observable anisotropy or positional correlations with their astrophysical source objects despite the expected strong deflections by intervening magnetic fields. For this purpose, we have simulated the propagation of UHECR nuclei including models for both the extragalactic magnetic field and the Galactic magnetic field. Assuming that only iron nuclei are injected steadily from sources with equal luminosity and spatially distributed according to the observed large scale structure in the local Universe, at the number of events published by the PAO so far, the arrival distribution of UHECRs would be consistent with no auto-correlation at 95% confidence if the mean number density of UHECR sources $n_s >~ 10^{-6}$ Mpc$^{-3}$, and consistent with no cross-correlation with sources within 95% errors for $n_s >~ 10^{-5}$ Mpc$^{-3}$. On the other hand, with 1000 events above $5.5 times 10^{19}$ eV in the whole sky, next generation experiments can reveal auto-correlation with more than 99% probability even for $n_s <~ 10^{-3}$ Mpc$^{-3}$, and cross-correlation with sources with more than 99% probability for $n_s <~ 10^{-4}$ Mpc$^{-3}$. In addition, we find that the contribution of Centaurus A is required to reproduce the currently observed UHECR excess in the Centaurus region. Secondary protons generated by photodisintegration of primary heavy nuclei during propagation play a crucial role in all cases, and the resulting anisotropy at small angular scales should provide a strong hint of the source location if the maximum energies of the heavy nuclei are sufficiently high.
148 - Daniel Kuempel 2014
More than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energy cosmic rays (E > 100 PeV) remains unclear. The understanding of production and propagation effects of these highest energetic par ticles in the universe is one of the most intense research fields of high-energy astrophysics. With the advent of advanced simulation engines developed during the last couple of years, and the increase of experimental data, we are now in a unique position to model source and propagation parameters in an unprecedented precision and compare it to measured data from large scale observatories. In this paper we revisit the most important propagation effects of cosmic rays through photon backgrounds and magnetic fields and introduce recent developments of propagation codes. Finally, by comparing the results to experimental data, possible implications on astrophysical parameters are given.
135 - Xiang Li , Bei Zhou , Hao-Ning He 2013
The existence of fast radio bursts (FRBs), a new type of extragalatic transients, has been established recently and quite a few models have been proposed. In this work we discuss the possible connection between the FRB sources and ultra-high energy ( $>10^{18}$ eV) cosmic rays. We show that in the blitzar model and the model of merging binary neutron stars, the huge energy release of each FRB central engine together with the rather high rate of FRBs, the accelerated EeV cosmic rays may contribute significantly to the observed ones. In other FRB models including for example the merger of double white dwarfs and the energetic magnetar radio flares, no significant EeV cosmic ray is expected. We also suggest that the mergers of double neutron stars, even if they are irrelevant to FRBs, may play a non-ignorable role in producing EeV cosmic ray protons if supramassive neutron stars were formed in a good fraction of mergers and the merger rate is $gtrsim 10^{3}~{rm yr^{-1}~ Gpc^{-3}}$. Such a possibility will be unambiguously tested in the era of gravitational wave astronomy.
122 - Hajime Takami 2011
The propagation trajectories of ultra-high-energy cosmic rays (UHECRs) are inevitably affected by Galactic magnetic field (GMF). Because of the inevitability, the importance of the studies of the propagation in GMF have increased to interpret the res ults of recent UHECR experiments. This article reviews the effects of GMF to the propagation and arrival directions of UHECRs and introduces recent studies to constrain UHECR sources.
249 - Todor Stanev 2008
We briefly describe the energy loss processes of ultrahigh energy protons, heavier nuclei and gamma rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic ray energy spectrum in propagation by the energy loss processes and the charged cosmic ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh energy cosmic rays goes into gamma rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا