ﻻ يوجد ملخص باللغة العربية
We study the position distribution of a single active Brownian particle (ABP) on the plane. We show that this distribution has a compact support, the boundary of which is an expanding circle. We focus on a short-time regime and employ the optimal fluctuation method (OFM) to study large deviations of the particle position coordinates $x$ and $y$. We determine the optimal paths of the ABP, conditioned on reaching specified values of $x$ and $y$, and the large deviation functions of the marginal distributions of $x$, and of $y$. These marginal distributions match continuously with near tails of the $x$ and $y$ distributions of typical fluctuations, studied earlier. We also calculate the large deviation function of the joint $x$ and $y$ distribution $P(x,y,t)$ in a vicinity of a special zero-noise point, and show that $ln P(x,y,t)$ has a nontrivial self-similar structure as a function of $x$, $y$ and $t$. The joint distribution vanishes extremely fast at the expanding circle, exhibiting an essential singularity there. This singularity is inherited by the marginal $x$- and $y$-distributions. We argue that this fingerprint of the short-time dynamics remains there at all times.
We study analytically the single-trajectory spectral density (STSD) of an active Brownian motion as exhibited, for example, by the dynamics of a chemically-active Janus colloid. We evaluate the standardly-defined spectral density, i.e. the STSD avera
We study the dynamics of the center of mass of a Brownian particle levitated in a Paul trap. We focus on the overdamped regime in the context of levitodynamics, comparing theory with our numerical simulations and experimental data from a nanoparticle
We study the dynamics of the N-particle system evolving in the XY hamiltonian mean field (HMF) model for a repulsive potential, when no phase transition occurs. Starting from a homogeneous distribution, particles evolve in a mean field created by the
We present a general scheme for treating particle beams as many particle systems. This includes the full counting statistics and the requirements of Bose/Fermi symmetry. In the stationary limit, i.e., for longer and longer beams, the total particle n
We study the random sequential adsorption of $k$-mers on the fully-connected lattice with $N=kn$ sites. The probability distribution $T_n(s,t)$ of the time $t$ needed to cover the lattice with $s$ $k$-mers is obtained using a generating function appr