ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward the full short-time statistics of an active Brownian particle on the plane

65   0   0.0 ( 0 )
 نشر من قبل Baruch Meerson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the position distribution of a single active Brownian particle (ABP) on the plane. We show that this distribution has a compact support, the boundary of which is an expanding circle. We focus on a short-time regime and employ the optimal fluctuation method (OFM) to study large deviations of the particle position coordinates $x$ and $y$. We determine the optimal paths of the ABP, conditioned on reaching specified values of $x$ and $y$, and the large deviation functions of the marginal distributions of $x$, and of $y$. These marginal distributions match continuously with near tails of the $x$ and $y$ distributions of typical fluctuations, studied earlier. We also calculate the large deviation function of the joint $x$ and $y$ distribution $P(x,y,t)$ in a vicinity of a special zero-noise point, and show that $ln P(x,y,t)$ has a nontrivial self-similar structure as a function of $x$, $y$ and $t$. The joint distribution vanishes extremely fast at the expanding circle, exhibiting an essential singularity there. This singularity is inherited by the marginal $x$- and $y$-distributions. We argue that this fingerprint of the short-time dynamics remains there at all times.



قيم البحث

اقرأ أيضاً

We study analytically the single-trajectory spectral density (STSD) of an active Brownian motion as exhibited, for example, by the dynamics of a chemically-active Janus colloid. We evaluate the standardly-defined spectral density, i.e. the STSD avera ged over a statistical ensemble of trajectories in the limit of an infinitely long observation time $T$, and also go beyond the standard analysis by considering the coefficient of variation $gamma$ of the distribution of the STSD. Moreover, we analyse the finite-$T$ behaviour of the STSD and $gamma$, determine the cross-correlations between spatial components of the STSD, and address the effects of translational diffusion on the functional forms of spectral densities. The exact expressions that we obtain unveil many distinctive features of active Brownian motion compared to its passive counterpart, which allow to distinguish between these two classes based solely on the spectral content of individual trajectories.
We study the dynamics of the center of mass of a Brownian particle levitated in a Paul trap. We focus on the overdamped regime in the context of levitodynamics, comparing theory with our numerical simulations and experimental data from a nanoparticle in a Paul trap. We provide an exact analytical solution to the stochastic equation of motion, expressions for the standard deviation of the motion, and thermalization times by using the WKB method under two different limits. Finally, we prove the power spectral density of the motion can be approximated by that of an Ornstein-Uhlenbeck process and use the found expression to calibrate the motion of a trapped particle.
We study the dynamics of the N-particle system evolving in the XY hamiltonian mean field (HMF) model for a repulsive potential, when no phase transition occurs. Starting from a homogeneous distribution, particles evolve in a mean field created by the interaction with all others. This interaction does not change the homogeneous state of the system, and particle motion is approximately ballistic with small corrections. For initial particle data approaching a waterbag, it is explicitly proved that corrections to the ballistic velocities are in the form of independent brownian noises over a time scale diverging not slower than $N^{2/5}$ as $N to infty$, which proves the propagation of molecular chaos. Molecular dynamics simulations of the XY-HMF model confirm our analytical findings.
We present a general scheme for treating particle beams as many particle systems. This includes the full counting statistics and the requirements of Bose/Fermi symmetry. In the stationary limit, i.e., for longer and longer beams, the total particle n umber diverges, and a description in Fock space is no longer possible. We therefore extend the formalism to include stationary beams. These beams exhibit a well-defined local counting statistics, by which we mean the full counting statistics of all clicks falling into any given finite interval. We treat in detail a model of a source, creating particles in a fixed state, which then evolve under the free time evolution, and we determine the resulting stationary beam in the far field. In comparison to the one-particle picture we obtain a correction due to Bose/Fermi statistics, which depends on the emission rate. We also consider plane waves as stationary many particle states, and determine the distribution of intervals between successive clicks in such a beam.
68 - Loic Turban 2019
We study the random sequential adsorption of $k$-mers on the fully-connected lattice with $N=kn$ sites. The probability distribution $T_n(s,t)$ of the time $t$ needed to cover the lattice with $s$ $k$-mers is obtained using a generating function appr oach. In the low coverage scaling limit where $s,n,ttoinfty$ with $y=s/n^{1/2}={mathrm O}(1)$ the random variable $t-s$ follows a Poisson distribution with mean $ky^2/2$. In the intermediate coverage scaling limit, when both $s$ and $n-s$ are ${mathrm O}(n)$, the mean value and the variance of the covering time are growing as $n$ and the fluctuations are Gaussian. When full coverage is approached the scaling functions diverge, which is the signal of a new scaling behaviour. Indeed, when $u=n-s={mathrm O}(1)$, the mean value of the covering time grows as $n^k$ and the variance as $n^{2k}$, thus $t$ is strongly fluctuating and no longer self-averaging. In this scaling regime the fluctuations are governed, for each value of $k$, by a different extreme value distribution, indexed by $u$. Explicit results are obtained for monomers (generalized Gumbel distribution) and dimers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا