ﻻ يوجد ملخص باللغة العربية
The Frascati National Laboratory (LNF) is the largest and the oldest among the National Laboratories of the Italian Institute for Nuclear Physics (INFN). Since its foundation in 1954, it has been devoted to two main activities: the development, construction and operation of particle accelerators; the design and construction of forefront detectors for particle, nuclear and astroparticle physics. The research program of LNF is focused on fundamental research, but interdisciplinary activity has grown of importance along the years, with a perfect balance between internal and external activities. The scientific program taking place at LNF, at present, is still centered on the DA$Phi$NE complex, but in the last years, a second accelerator infrastructure, SPARC_LAB, devoted to the study and development of new technique of particle acceleration is marking the path toward the future: EuPARXIA. This will be an European infrastructure for plasma acceleration development. In this paper, an overview of the research program of the Laboratory and of the future perspectives is presented.
During the preparatory phase of the International Linear Collider (ILC) project, all technical development and engineering design needed for the start of ILC construction must be completed, in parallel with intergovernmental discussion of governance
The PADME experiment will search for the invisible decay of Dark Photons produced in interactions of positron from the DA$Phi$NE Linac on a target. The collaboration aims at reaching a sensitivity of $sim10^{-3}$ on the coupling constant for values of Dark Photon masses up to $23.7,mbox{MeV}$.
The FREIA Laboratory at Uppsala University focuses on superconducting technology and accelerator development. It actively supports the development of the European Spallation Source, CERN, and MAX IV, among others. FREIA has developed test facilities
The ENUBET ERC project (2016-2021) is studying a facility based on a narrow band beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. A key element of
The classical description of synchrotron radiation fails at large Lorentz factors, $gamma$, for relativistic electrons crossing strong transverse magnetic fields $B$. In the rest frame of the electron this field is comparable to the so-called critica