ﻻ يوجد ملخص باللغة العربية
We present a combined oxygen $K$-egde x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) study of the bilayer ruthenate Ca$_3$Ru$_2$O$_7$. Our RIXS experiments on Ca$_3$Ru$_2$O$_7$ were carried out on the overlapping in-plane and inner apical oxygen resonances, which are distinguishable from the outer apical one. Comparison to equivalent oxygen $K$-edge spectra recorded on band-Mott insulating Ca$_2$RuO$_4$ is made. In contrast to Ca$_2$RuO$_4$ spectra, which contain excitations linked to Mott physics, Ca$_3$Ru$_2$O$_7$ spectra feature only intra-$t_{2g}$ ones that do not directly involve the Coulomb energy scale. As found in Ca$_2$RuO$_4$, we resolve two intra-$t_{2g}$ excitations in Ca$_3$Ru$_2$O$_7$. Moreover, the lowest lying excitation in Ca$_3$Ru$_2$O$_7$ shows a significant dispersion, revealing a collective character differently from what is observed in Ca$_2$RuO$_4$. Theoretical modelling supports the interpretation of this lowest energy excitation in Ca$_3$Ru$_2$O$_7$ as a magnetic transverse mode with multi-particle character, whereas the corresponding excitation in Ca$_2$RuO$_4$ is assigned to combined longitudinal and transverse spin modes. These fundamental differences are discussed in terms of the inequivalent magnetic ground-state manifestations in Ca$_2$RuO$_4$ and Ca$_3$Ru$_2$O$_7$.
Ambipolar transport is a commonly occurring theme in semimetals and semiconductors. Here we present an analytical formulation of the conductivity for a two-band system. Electron and hole carrier densities and their respective conductivities are mappe
Resonant x-ray diffraction performed at the $rm L_{II}$ and $rm L_{III}$ absorption edges of Ru has been used to investigate the magnetic and orbital ordering in Ca$_2$RuO$_4$ single crystals. A large resonant enhancement due to electric dipole $2pto
The strongly correlated insulator Ca$_{2}$RuO$_4$ is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high-
The antiferromagnetic Ruddlesden-Popper ruthenate Ca$_3$Ru$_2$O$_7$ is a model polar metal, combining inversion symmetry breaking with metallic conductivity; however, its low temperature ($T < 48$ K) crystal structure and Fermi surface topology remai
Electronic band structures in solids stem from a periodic potential reflecting the structure of either the crystal lattice or an electronic order. In the stoichiometric ruthenate Ca$_3$Ru$_2$O$_7$, numerous Fermi surface sensitive probes indicate a l