ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological phase transition and phonon-space Dirac topology surfaces in ZrTe$_5$

166   0   0.0 ( 0 )
 نشر من قبل Weiguo Yin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use first-principles methods to reveal that in ZrTe$_5$, a layered van der Waals material like graphite, atomic displacements corresponding to five of the six zone-center A$_g$ (symmetry-preserving) phonon modes can drive a topological phase transition from strong to weak topological insulator with a Dirac semimetal state emerging at the transition, giving rise to a Dirac topology surface in the multi-dimensional space formed by the A$_g$ phonon modes. This implies that the topological phase transition in ZrTe$_5$ can be realized with many different settings of external stimuli that are capable of penetrating through the phonon-space Dirac surface without breaking the crystallographic symmetry. Furthermore, we predict that domains with effective mass of opposite signs can be created by laser pumping and will host Weyl modes of opposite chirality propagating along the domain boundaries. Studying phonon-space topology surfaces provides a new route to understanding and utilizing the exotic physical properties of ZrTe$_5$ and related quantum materials.



قيم البحث

اقرأ أيضاً

176 - Huinan Xia , Yang Li , Min Cai 2018
Three-dimensional (3D) topological Dirac semimetal, when thinned down to 2D few layers, is expected to possess gapped Dirac nodes via quantum confinement effect and concomitantly display the intriguing quantum spin Hall (QSH) insulator phase. However , the 3D-to-2D crossover and the associated topological phase transition, which is valuable for understanding the topological quantum phases, remain unexplored. Here, we synthesize high-quality Na3Bi thin films with R3*R3 reconstruction on graphene, and systematically characterize their thickness-dependent electronic and topological properties by scanning tunneling microscopy/spectroscopy in combination with first-principles calculations. We demonstrate that Dirac gaps emerge in Na3Bi films, providing spectroscopic evidences of dimensional crossover from a 3D semimetal to a 2D topological insulator. Importantly, the Dirac gaps are revealed to be of sizable magnitudes on 3 and 4 monolayers (72 and 65 meV, respectively) with topologically nontrivial edge states. Moreover, the Fermi energy of a Na3Bi film can be tuned via certain growth process, thus offering a viable way for achieving charge neutrality in transport. The feasibility of controlling Dirac gap opening and charge neutrality enables realizing intrinsic high-temperature QSH effect in Na3Bi films and achieving potential applications in topological devices.
We apply $^{125}$Te nuclear magnetic resonance (NMR) spectroscopy to investigate the Dirac semimetal ZrTe$_5$. With the NMR magnetic field parallel to the $b$-axis, we observe significant quantum magnetic effects. These include an abrupt drop at 150 K in spin-lattice relaxation rate. This corresponds to a gap-opening transition in the Dirac carriers, likely indicating the onset of excitonic pairing. Below 50 K, we see a more negative shift for the Te$_z$ bridging site indicating the repopulation of Dirac levels with spin polarized carriers at these temperatures. This is the previously reported 3D quantum Hall regime; however, we see no sign of a charge density wave as has been proposed.
Three dimensional (3D) topological Dirac materials are under intensive study recently. The layered compound ZrTe$_5$ has been suggested to be one of them by transport and ARPES experiments. Here, we perform infrared reflectivity measurement to invest igate the underlying physics of this material. The derived optical conductivity exhibits linear increasing with frequency below normal interband transitions, which provides the first optical spectroscopic proof of a 3D Dirac semimetal. Apart from that, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be associated with the consequence of lattice parameter shrinking. In addition, an extremely sharp peak shows up in the frequency dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.
ZrTe$_5$ is a newly discovered topological material. Shortly after a single layer ZrTe$_5$ had been predicted to be a two-dimensional topological insulator, a handful of experiments have been carried out on bulk ZrTe$_5$ crystals, which however sugge st that its bulk form may be a three-dimensional topological Dirac semimetal. We report the first transport study on ultra thin ZrTe$_5$ flakes down to 10 nm. A significant modulation of the characteristic resistivity maximum in the temperature dependence by thickness has been observed. Remarkably, the metallic behavior, occurring only below about 150 K in bulk, persists to over 320 K for flakes less than 20 nm thick. Furthermore, the resistivity maximum can be greatly tuned by ionic gating. Combined with the Hall resistance, we identify contributions from a semiconducting and a semimetallic bands. The enhancement of the metallic state in thin flakes are consequence of shifting of the energy bands. Our results suggest that the band structure sensitively depends on the film thickness, which may explain the divergent experimental observations on bulk materials.
Based on density functional theory (DFT), we investigate the electronic properties of bulk and single-layer ZrTe$_4$Se. The band structure of bulk ZrTe$_4$Se can produce a semimetal-to-topological insulator (TI) phase transition under uniaxial strain . The maximum global band gap is 0.189 eV at the 7% tensile strain. Meanwhile, the Z$_2$ invariants (0; 110) demonstrate conclusively it is a weak topological insulator (WTI). The two Dirac cones for the (001) surface further confirm the nontrivial topological nature. The single-layer ZrTe$_4$Se is a quantum spin Hall (QSH) insulator with a band gap 86.4 meV and Z$_2$=1, the nontrivial metallic edge states further confirm the nontrivial topological nature. The maximum global band gap is 0.211 eV at the tensile strain 8%. When the compressive strain is more than 1%, the band structure of single-layer ZrTe$_4$Se produces a TI-to-semimetal transition. These theoretical analysis may provide a method for searching large band gap TIs and platform for topological nanoelectronic device applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا