ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Feature Descriptors using Camera Pose Supervision

69   0   0.0 ( 0 )
 نشر من قبل Qianqian Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent research on learned visual descriptors has shown promising improvements in correspondence estimation, a key component of many 3D vision tasks. However, existing descriptor learning frameworks typically require ground-truth correspondences between feature points for training, which are challenging to acquire at scale. In this paper we propose a novel weakly-supervised framework that can learn feature descriptors solely from relative camera poses between images. To do so, we devise both a new loss function that exploits the epipolar constraint given by camera poses, and a new model architecture that makes the whole pipeline differentiable and efficient. Because we no longer need pixel-level ground-truth correspondences, our framework opens up the possibility of training on much larger and more diverse datasets for better and unbiased descriptors. We call the resulting descriptors CAmera Pose Supervised, or CAPS, descriptors. Though trained with weak supervision, CAPS descriptors outperform even prior fully-supervised descriptors and achieve state-of-the-art performance on a variety of geometric tasks.



قيم البحث

اقرأ أيضاً

We address the challenging problem of RGB image-based head pose estimation. We first reformulate head pose representation learning to constrain it to a bounded space. Head pose represented as vector projection or vector angles shows helpful to improv ing performance. Further, a ranking loss combined with MSE regression loss is proposed. The ranking loss supervises a neural network with paired samples of the same person and penalises incorrect ordering of pose prediction. Analysis on this new loss function suggests it contributes to a better local feature extractor, where features are generalised to Abstract Landmarks which are pose-related features instead of pose-irrelevant information such as identity, age, and lighting. Extensive experiments show that our method significantly outperforms the current state-of-the-art schemes on public datasets: AFLW2000 and BIWI. Our model achieves significant improvements over previous SOTA MAE on AFLW2000 and BIWI from 4.50 to 3.66 and from 4.0 to 3.71 respectively. Source code will be made available at: https://github.com/seathiefwang/RankHeadPose.
Visual re-localization means using a single image as input to estimate the cameras location and orientation relative to a pre-recorded environment. The highest-scoring methods are structure based, and need the query cameras intrinsics as an input to the model, with careful geometric optimization. When intrinsics are absent, methods vie for accuracy by making various other assumptions. This yields fairly good localization scores, but the models are narrow in some way, eg., requiring costly test-time computations, or depth sensors, or multiple query frames. In contrast, our proposed method makes few special assumptions, and is fairly lightweight in training and testing. Our pose regression network learns from only relative poses of training scenes. For inference, it builds a graph connecting the query image to training counterparts and uses a graph neural network (GNN) with image representations on nodes and image-pair representations on edges. By efficiently passing messages between them, both representation types are refined to produce a consistent camera pose estimate. We validate the effectiveness of our approach on both standard indoor (7-Scenes) and outdoor (Cambridge Landmarks) camera re-localization benchmarks. Our relative pose regression method matches the accuracy of absolute pose regression networks, while retaining the relative-pose models test-time speed and ability to generalize to non-training scenes.
We propose a novel image based localization system using graph neural networks (GNN). The pretrained ResNet50 convolutional neural network (CNN) architecture is used to extract the important features for each image. Following, the extracted features are input to GNN to find the pose of each image by either using the image features as a node in a graph and formulate the pose estimation problem as node pose regression or modelling the image features themselves as a graph and the problem becomes graph pose regression. We do an extensive comparison between the proposed two approaches and the state of the art single image localization methods and show that using GNN leads to enhanced performance for both indoor and outdoor environments.
Modern deep learning techniques that regress the relative camera pose between two images have difficulty dealing with challenging scenarios, such as large camera motions resulting in occlusions and significant changes in perspective that leave little overlap between images. These models continue to struggle even with the benefit of large supervised training datasets. To address the limitations of these models, we take inspiration from techniques that show regressing keypoint locations in 2D and 3D can be improved by estimating a discrete distribution over keypoint locations. Analogously, in this paper we explore improving camera pose regression by instead predicting a discrete distribution over camera poses. To realize this idea, we introduce DirectionNet, which estimates discrete distributions over the 5D relative pose space using a novel parameterization to make the estimation problem tractable. Specifically, DirectionNet factorizes relative camera pose, specified by a 3D rotation and a translation direction, into a set of 3D direction vectors. Since 3D directions can be identified with points on the sphere, DirectionNet estimates discrete distributions on the sphere as its output. We evaluate our model on challenging synthetic and real pose estimation datasets constructed from Matterport3D and InteriorNet. Promising results show a near 50% reduction in error over direct regression methods.
Self-supervised learning, which benefits from automatically constructing labels through pre-designed pretext task, has recently been applied for strengthen supervised learning. Since previous self-supervised pretext tasks are based on input, they may incur huge additional training overhead. In this paper we find that features in CNNs can be also used for self-supervision. Thus we creatively design the emph{feature-based pretext task} which requires only a small amount of additional training overhead. In our task we discard different particular regions of features, and then train the model to distinguish these different features. In order to fully apply our feature-based pretext task in supervised learning, we also propose a novel learning framework containing multi-classifiers for further improvement. Original labels will be expanded to joint labels via self-supervision of feature transformations. With more semantic information provided by our self-supervised tasks, this approach can train CNNs more effectively. Extensive experiments on various supervised learning tasks demonstrate the accuracy improvement and wide applicability of our method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا