ترغب بنشر مسار تعليمي؟ اضغط هنا

Modularized Transfomer-based Ranking Framework

131   0   0.0 ( 0 )
 نشر من قبل Zhuyun Dai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent innovations in Transformer-based ranking models have advanced the state-of-the-art in information retrieval. However, these Transformers are computationally expensive, and their opaque hidden states make it hard to understand the ranking process. In this work, we modularize the Transformer ranker into separate modules for text representation and interaction. We show how this design enables substantially faster ranking using offline pre-computed representations and light-weight online interactions. The modular design is also easier to interpret and sheds light on the ranking process in Transformer rankers.



قيم البحث

اقرأ أيضاً

Ranking is the most important component in a search system. Mostsearch systems deal with large amounts of natural language data,hence an effective ranking system requires a deep understandingof text semantics. Recently, deep learning based natural la nguageprocessing (deep NLP) models have generated promising results onranking systems. BERT is one of the most successful models thatlearn contextual embedding, which has been applied to capturecomplex query-document relations for search ranking. However,this is generally done by exhaustively interacting each query wordwith each document word, which is inefficient for online servingin search product systems. In this paper, we investigate how tobuild an efficient BERT-based ranking model for industry use cases.The solution is further extended to a general ranking framework,DeText, that is open sourced and can be applied to various rankingproductions. Offline and online experiments of DeText on threereal-world search systems present significant improvement overstate-of-the-art approaches.
Numerous neural retrieval models have been proposed in recent years. These models learn to compute a ranking score between the given query and document. The majority of existing models are trained in pairwise fashion using human-judged labels directl y without further calibration. The traditional pairwise schemes can be time-consuming and require pre-defined positive-negative document pairs for training, potentially leading to learning bias due to document distribution mismatch between training and test conditions. Some popular existing listwise schemes rely on the strong pre-defined probabilistic assumptions and stark difference between relevant and non-relevant documents for the given query, which may limit the model potential due to the low-quality or ambiguous relevance labels. To address these concerns, we turn to a physics-inspired ranking balance scheme and propose PoolRank, a pooling-based listwise learning framework. The proposed scheme has four major advantages: (1) PoolRank extracts training information from the best candidates at the local level based on model performance and relative ranking among abundant document candidates. (2) By combining four pooling-based loss components in a multi-task learning fashion, PoolRank calibrates the ranking balance for the partially relevant and the highly non-relevant documents automatically without costly human inspection. (3) PoolRank can be easily generalized to any neural retrieval model without requiring additional learnable parameters or model structure modifications. (4) Compared to pairwise learning and existing listwise learning schemes, PoolRank yields better ranking performance for all studied retrieval models while retaining efficient convergence rates.
Learning from implicit user feedback is challenging as we can only observe positive samples but never access negative ones. Most conventional methods cope with this issue by adopting a pairwise ranking approach with negative sampling. However, the pa irwise ranking approach has a severe disadvantage in the convergence time owing to the quadratically increasing computational cost with respect to the sample size; it is problematic, particularly for large-scale datasets and complex models such as neural networks. By contrast, a pointwise approach does not directly solve a ranking problem, and is therefore inferior to a pairwise counterpart in top-K ranking tasks; however, it is generally advantageous in regards to the convergence time. This study aims to establish an approach to learn personalised ranking from implicit feedback, which reconciles the training efficiency of the pointwise approach and ranking effectiveness of the pairwise counterpart. The key idea is to estimate the ranking of items in a pointwise manner; we first reformulate the conventional pointwise approach based on density ratio estimation and then incorporate the essence of ranking-oriented approaches (e.g. the pairwise approach) into our formulation. Through experiments on three real-world datasets, we demonstrate that our approach not only dramatically reduces the convergence time (one to two orders of magnitude faster) but also significantly improving the ranking performance.
As the heart of a search engine, the ranking system plays a crucial role in satisfying users information demands. More recently, neural rankers fine-tuned from pre-trained language models (PLMs) establish state-of-the-art ranking effectiveness. Howev er, it is nontrivial to directly apply these PLM-based rankers to the large-scale web search system due to the following challenging issues:(1) the prohibitively expensive computations of massive neural PLMs, especially for long texts in the web-document, prohibit their deployments in an online ranking system that demands extremely low latency;(2) the discrepancy between existing ranking-agnostic pre-training objectives and the ad-hoc retrieval scenarios that demand comprehensive relevance modeling is another main barrier for improving the online ranking system;(3) a real-world search engine typically involves a committee of ranking components, and thus the compatibility of the individually fine-tuned ranking model is critical for a cooperative ranking system. In this work, we contribute a series of successfully applied techniques in tackling these exposed issues when deploying the state-of-the-art Chinese pre-trained language model, i.e., ERNIE, in the online search engine system. We first articulate a novel practice to cost-efficiently summarize the web document and contextualize the resultant summary content with the query using a cheap yet powerful Pyramid-ERNIE architecture. Then we endow an innovative paradigm to finely exploit the large-scale noisy and biased post-click behavioral data for relevance-oriented pre-training. We also propose a human-anchored fine-tuning strategy tailored for the online ranking system, aiming to stabilize the ranking signals across various online components. Extensive offline and online experimental results show that the proposed techniques significantly boost the search engines performance.
Direct optimization of IR metrics has often been adopted as an approach to devise and develop ranking-based recommender systems. Most methods following this approach aim at optimizing the same metric being used for evaluation, under the assumption th at this will lead to the best performance. A number of studies of this practice bring this assumption, however, into question. In this paper, we dig deeper into this issue in order to learn more about the effects of the choice of the metric to optimize on the performance of a ranking-based recommender system. We present an extensive experimental study conducted on different datasets in both pairwise and listwise learning-to-rank scenarios, to compare the relative merit of four popular IR metrics, namely RR, AP, nDCG and RBP, when used for optimization and assessment of recommender systems in various combinations. For the first three, we follow the practice of loss function formulation available in literature. For the fourth one, we propose novel loss functions inspired by RBP for both the pairwise and listwise scenario. Our results confirm that the best performance is indeed not necessarily achieved when optimizing the same metric being used for evaluation. In fact, we find that RBP-inspired losses perform at least as well as other metrics in a consistent way, and offer clear benefits in several cases. Interesting to see is that RBP-inspired losses, while improving the recommendation performance for all uses, may lead to an individual performance gain that is correlated with the activity level of a user in interacting with items. The more active the users, the more they benefit. Overall, our results challenge the assumption behind the current research practice of optimizing and evaluating the same metric, and point to RBP-based optimization instead as a promising alternative when learning to rank in the recommendation context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا