ﻻ يوجد ملخص باللغة العربية
Based on the recent breakthrough of Huang (2019), we show that for any total Boolean function $f$, the deterministic query complexity, $D(f)$, is at most quartic in the quantum query complexity, $Q(f)$: $D(f) = O(Q(f)^4)$. This matches the known separation (up to log factors) due to Ambainis, Balodis, Belovs, Lee, Santha, and Smotrovs (2017). We also use the result to resolve the quantum analogue of the Aanderaa-Karp-Rosenberg conjecture. We show that if $f$ is a nontrivial monotone graph property of an $n$-vertex graph specified by its adjacency matrix, then $Q(f) = Omega(n)$, which is also optimal.
Based on the recent breakthrough of Huang (2019), we show that for any total Boolean function $f$, $bullet quad mathrm{deg}(f) = O(widetilde{mathrm{deg}}(f)^2)$: The degree of $f$ is at most quadratic in the approximate degree of $f$. This is optim
In this note we give a version of Hao Huangs proof of the sensitivity conjecture, shedding some light on the origin of the magical matrix $A$ in that proof. For the history of the subject and the importance of this conjecture to the study of boolean
Valiant-Vazirani showed in 1985 [VV85] that solving NP with the promise that yes instances have only one witness is powerful enough to solve the entire NP class (under randomized reductions). We are interested in extending this result to the quantu
We give a direct product theorem for the entanglement-assisted interactive quantum communication complexity of an $l$-player predicate $mathsf{V}$. In particular we show that for a distribution $p$ that is product across the input sets of the $l$ pla
The behavior of games repeated in parallel, when played with quantumly entangled players, has received much attention in recent years. Quantum analogues of Razs classical parallel repetition theorem have been proved for many special classes of games.