ﻻ يوجد ملخص باللغة العربية
This paper studies output synchronization problems for heterogeneous networks of continuous- or discrete-time right-invertible linear agents in presence of unknown, non-uniform and arbitrarily large input delay based on localized information exchange. It is assumed that all the agents are introspective, meaning that they have access to their own local measurements. Universal linear protocols are proposed for each agent to achieve output synchronizations. Proposed protocols are designed solely based on the agent models using no information about communication graph and the number of agents or other agent models information. Moreover, the protocols can tolerate arbitrarily large input delays.
In this paper, we study delayed regulated state/output synchronization for discrete-time homogeneous and heterogeneous networks of multi-agent systems (MAS) subject to unknown, non-uniform and arbitrarily large communication delays. A delay transform
In this paper, we consider scalable output and regulated output synchronization problems for heterogeneous networks of right-invertible linear agents based on localized information exchange where in the case of regulated output synchronization, the r
This paper studies scale-free protocol design for H_infty almost output and regulated output synchronization of heterogeneous multi-agent systems with linear, right-invertible, and introspective agents in presence of external disturbances. The collab
This paper studies global regulated state synchronization of homogeneous networks of non-introspective agents in presence of input saturation. We identify three classes of agent models which are neutrally stable, double-integrator, and mixed of doubl
In this paper, we study scale-free state synchronization of discrete-time homogeneous multi-agent systems (MAS) subject to unknown, nonuniform, and arbitrarily large communication delays. The scale-free protocol utilizes localized information exchang