ﻻ يوجد ملخص باللغة العربية
Semi-grant-free (SGF) transmission has recently received significant attention due to its capability to accommodate massive connectivity and reduce access delay by admitting grant-free users to channels which would otherwise be solely occupied by grant-based users. In this paper, a new SGF transmission scheme that exploits the flexibility in choosing the decoding order in non-orthogonal multiple access (NOMA) is proposed. Compared to existing SGF schemes, this new scheme can ensure that admitting the grant-free users is completely transparent to the grant-based users, i.e., the grant-based users quality-of-service experience is guaranteed to be the same as for orthogonal multiple access. In addition, compared to existing SGF schemes, the proposed SGF scheme can significantly improve the robustness of the grant-free users transmissions and effectively avoid outage probability error floors. To facilitate the performance evaluation of the proposed SGF transmission scheme, an exact expression for the outage probability is obtained and an asymptotic analysis is conducted to show that the achievable multi-user diversity gain is proportional to the number of participating grant-free users. Computer simulation results demonstrate the performance of the proposed SGF transmission scheme and verify the accuracy of the developed analytical results.
In this paper, we exploit the capability of multi-agent deep reinforcement learning (MA-DRL) technique to generate a transmit power pool (PP) for Internet of things (IoT) networks with semi-grant-free non-orthogonal multiple access (SGF-NOMA). The PP
Grant-free non-orthogonal multiple access (GF-NOMA) is a potential technique to support massive Ultra-Reliable and Low-Latency Communication (mURLLC) service. However, the dynamic resource configuration in GF-NOMA systems is challenging due to random
Non-Orthogonal Multiple Access (NOMA) and caching are two proposed approaches to increase the capacity of future 5G wireless systems. Typically in NOMA systems, signals at the receiver are decoded using successive interference cancellation in order t
The fundamental power allocation requirements for NOMA systems with minimum quality of service (QoS) requirements are investigated. For any minimum QoS rate $R_0$, the limits on the power allocation coefficients for each user are derived, such that a
The next generation Internet of Things (IoT) exhibits a unique feature that IoT devices have different energy profiles and quality of service (QoS) requirements. In this paper, two energy and spectrally efficient transmission strategies, namely wir