ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling pure-metal ejecta X-ray emission in supernova remnants through their radiative recombination continuum

89   0   0.0 ( 0 )
 نشر من قبل Emanuele Greco
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectral analysis of X-ray emission from ejecta in supernova remnants (SNRs) is hampered by the low spectral resolution of CCD cameras, which creates a degeneracy between the best-fit values of abundances and emission measure. The combined contribution of shocked ambient medium and ejecta to the X-ray emission complicates the determination of the ejecta mass and chemical composition, leading to big uncertainties in mass estimates and it can introduce a bias in the comparison between the observed ejecta composition and the yields predicted by explosive nucleosynthesis. We explore the capabilities of present and future spectral instruments with the aim of identifying a spectral feature which may allow us to discriminate between metal-rich and pure-metal plasmas in X-ray spectra of SNRs. We studied the behavior of the most common X-ray emission processes of an optically thin plasma in the high-abundance regime. We investigated spectral features of bremsstrahlung, radiative recombination continua (RRC) and line emission, by exploring a wide range of chemical abundances, temperatures and ionization parameters. We synthesized X-ray spectra from a 3D hydrodynamic (HD) simulation of Cas A, by using the response matrix from the Chandra/ACIS-S CCD detector and that of the XRISM/Resolve X-ray calorimeter. We found that a bright RRC shows up when the plasma is made of pure-metal ejecta, and a high spectral resolution is needed to identify this ejecta signature. We verified the applicability of our novel diagnostic tool and we propose a promising target for the future detection of such spectral feature: the southeastern Fe-rich clump of Cas A. While there is no way to unambiguously reveal pure-metal ejecta emission with CCD detectors, X-ray calorimeters will be able to pinpoint the presence of pure-metal RRC and to recover correctly absolute mass and the chemical composition of the ejecta.



قيم البحث

اقرأ أيضاً

172 - Jacco Vink 2011
Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations ar e an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.
Context: Tracing unstable isotopes produced in supernova nucleosynthesis provides a direct diagnostic of supernova explosion physics. Theoretical models predict an extensive variety of scenarios, which can be constrained through observations of the a bundant isotopes $^{56}$Ni and $^{44}$Ti. Direct evidence of the latter was previously found only in two core-collapse supernova events, and appears to be absent in thermonuclear supernovae.Aims: We aim to to constrain the supernova progenitor types of Cas A, SN 1987A, Vela Jr., G1.9+0.3, SN1572, and SN1604 through their $^{44}$Ti ejecta masses and explosion kinematics. Methods: We analyzed INTEGRAL/SPI observations of the candidate sources utilizing an empirically motivated high-precision background model. We analyzed the three dominant spectroscopically resolved de-excitation lines at 68, 78, and 1157,keV emitted in the decay chain of $^{44}$Ti. The fluxes allow the determination of the production yields of $^{44}$Ti. Remnant kinematics were obtained from the Doppler characteristics of the lines. Results: We find a significant signal for Cas A in all three lines with a combined significance of 5.4$sigma$. The fluxes are $(3.3 pm 0.9) times 10^{-5}$ ph cm$^{-2}$ s$^{-1}$, and $(4.2 pm 1.0) times 10^{-5}$ ph cm$^{-2}$ s$^{-1}$ for the $^{44}$Ti and $^{44}$Sc decay, respectively. We obtain higher fluxes for $^{44}$Ti with our analysis of Cas A than were obtained in previous analyses. We discuss potential differences. Conclusions: We obtain a high $^{44}$Ti ejecta mass for Cas A that is in disagreement with ejecta yields from symmetric 2D models. Upper limits for the other core-collapse supernovae are in agreement with model predictions and previous studies. The upper limits we find for the three thermonuclear supernovae consistently exclude the double detonation and pure helium deflagration models as progenitors.
We show that fast moving isolated fragments of a supernova ejecta composed of heavy elements should be sources of K_alpha X-ray line emission of the SN nuclear-processed products. Supersonic motion of the knots in the intercloud medium will result in a bow-shock/knot-shock structure creation. Fast nonthermal particles accelerated by Fermi mechanism in the MHD collisionless shocks diffuse through a cold metallic knot, producing the X-ray emission. We modeled the X-ray emission from a fast moving knot of a mass M ~ 10^{-3} Msun, containing about 10^{-4} Msun of any metal impurities like Si, S, Ar, Ca, Fe. The fast electron distribution was simulated using the kinetic description. We accounted for nonlinear effects of shock modification by the nonthermal particles pressure. The K_alpha line emission is most prominent for the knots propagating through dense molecular clouds. The bow shock should be a radiative wave with a prominent infrared and optical emission. In that case the X-ray line spectrum of an ejecta fragment is dominated by the low ionization states of the ions with the metal line luminosities reaching L_x gsim 10^{31} erg/s. High resolution XMM and Chandra observations are able to detect the line emission from the knots at distances up to a few kpcs. The knots propagating through tenuous interstellar matter are of much fainter surface brightness but long-lived. The line spectra with higher ionization states of the ions are expected in that case. Compact dense knots could be opaque for some X-ray lines and that is important for their abundances interpretation. The ensemble of unresolved knots of galactic supernovae can contribute substantially to the iron line emission observed from the Galactic Center region and the Galactic ridge.
We present analytical and numerical studies of models of supernova-remnant (SNR) blast waves expanding into uniform media and interacting with a denser cavity wall, in one spatial dimension. We predict the nonthermal emission from such blast waves: s ynchrotron emission at radio and X-ray energies, and bremsstrahlung, inverse-Compton emission (from cosmic-microwave-background seed photons, ICCMB), and emission from the decay of $pi^0$ mesons produced in inelastic collisions between accelerated ions and thermal gas, at GeV and TeV energies. Accelerated particle spectra are assumed to be power-laws with exponential cutoffs at energies limited by the remnant age or (for electrons, if lower) by radiative losses. We compare the results with those from homogeneous (one-zone) models. Such models give fair representations of the 1-D results for uniform media, but cavity-wall interactions produce effects for which one-zone models are inadequate. We study the time evolution of SNR morphology and emission with time. Strong morphological differences exist between ICCMB and $pi^0$-decay emission, at some stages, the TeV emission can be dominated by the former and the GeV by the latter, resulting in strong energy-dependence of morphology. Integrated gamma-ray spectra show apparent power-laws of slopes that vary with time, but do not indicate the energy distribution of a single population of particles. As observational capabilities at GeV and TeV energies improve, spatial inhomogeneity in SNRs will need to be accounted for.
The material expelled by core-collapse supernova (SN) explosions absorbs X-rays from the central regions. We use SN models based on three-dimensional neutrino-driven explosions to estimate optical depths to the center of the explosion, compare differ ent progenitor models, and investigate the effects of explosion asymmetries. The optical depths below 2 keV for progenitors with a remaining hydrogen envelope are expected to be high during the first century after the explosion due to photoabsorption. A typical optical depth is $100 t_4^{-2} E^{-2}$, where $t_4$ is the time since the explosion in units of 10 000 days (${sim}$27 years) and $E$ the energy in units of keV. Compton scattering dominates above 50 keV, but the scattering depth is lower and reaches unity already at ${sim}$1000 days at 1 MeV. The optical depths are approximately an order of magnitude lower for hydrogen-stripped progenitors. The metallicity of the SN ejecta is much higher than in the interstellar medium, which enhances photoabsorption and makes absorption edges stronger. These results are applicable to young SN remnants in general, but we explore the effects on observations of SN 1987A and the compact object in Cas A in detail. For SN 1987A, the absorption is high and the X-ray upper limits of ${sim}$100 Lsun on a compact object are approximately an order of magnitude less constraining than previous estimates using other absorption models. The details are presented in an accompanying paper. For the central compact object in Cas A, we find no significant effects of our more detailed absorption model on the inferred surface temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا