ﻻ يوجد ملخص باللغة العربية
Spectral analysis of X-ray emission from ejecta in supernova remnants (SNRs) is hampered by the low spectral resolution of CCD cameras, which creates a degeneracy between the best-fit values of abundances and emission measure. The combined contribution of shocked ambient medium and ejecta to the X-ray emission complicates the determination of the ejecta mass and chemical composition, leading to big uncertainties in mass estimates and it can introduce a bias in the comparison between the observed ejecta composition and the yields predicted by explosive nucleosynthesis. We explore the capabilities of present and future spectral instruments with the aim of identifying a spectral feature which may allow us to discriminate between metal-rich and pure-metal plasmas in X-ray spectra of SNRs. We studied the behavior of the most common X-ray emission processes of an optically thin plasma in the high-abundance regime. We investigated spectral features of bremsstrahlung, radiative recombination continua (RRC) and line emission, by exploring a wide range of chemical abundances, temperatures and ionization parameters. We synthesized X-ray spectra from a 3D hydrodynamic (HD) simulation of Cas A, by using the response matrix from the Chandra/ACIS-S CCD detector and that of the XRISM/Resolve X-ray calorimeter. We found that a bright RRC shows up when the plasma is made of pure-metal ejecta, and a high spectral resolution is needed to identify this ejecta signature. We verified the applicability of our novel diagnostic tool and we propose a promising target for the future detection of such spectral feature: the southeastern Fe-rich clump of Cas A. While there is no way to unambiguously reveal pure-metal ejecta emission with CCD detectors, X-ray calorimeters will be able to pinpoint the presence of pure-metal RRC and to recover correctly absolute mass and the chemical composition of the ejecta.
Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations ar
Context: Tracing unstable isotopes produced in supernova nucleosynthesis provides a direct diagnostic of supernova explosion physics. Theoretical models predict an extensive variety of scenarios, which can be constrained through observations of the a
We show that fast moving isolated fragments of a supernova ejecta composed of heavy elements should be sources of K_alpha X-ray line emission of the SN nuclear-processed products. Supersonic motion of the knots in the intercloud medium will result in
We present analytical and numerical studies of models of supernova-remnant (SNR) blast waves expanding into uniform media and interacting with a denser cavity wall, in one spatial dimension. We predict the nonthermal emission from such blast waves: s
The material expelled by core-collapse supernova (SN) explosions absorbs X-rays from the central regions. We use SN models based on three-dimensional neutrino-driven explosions to estimate optical depths to the center of the explosion, compare differ