ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear versus nonlinear electro-optic effects in materials

84   0   0.0 ( 0 )
 نشر من قبل Zhijun Jiang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two schemes are proposed to compute the nonlinear electro-optic (EO) tensor for the first time. In the first scheme, we compute the linear EO tensor of the structure under a finite electric field, while we compute the refractive index of the structure under a finite electric field in the second scheme. Such schemes are applied to Pb(Zr,Ti)O$_{3}$ and BaTiO$_{3}$ ferroelectric oxides. It is found to reproduce a recently observed feature, namely why Pb(Zr$_{0.52}$Ti$_{0.48}$)O$_{3}$ adopts a mostly linear EO response while BaTiO$_{3}$ exhibits a strongly nonlinear conversion between electric and optical properties. Furthermore, the atomistic insight provided by the proposed ab-initio scheme reveals the origin of such qualitatively different responses, in terms of the field-induced behavior of the frequencies of some phonon modes and of some force constants.



قيم البحث

اقرأ أيضاً

Future quantum computation and networks require scalable monolithic circuits, which incorporate various advanced functionalities on a single physical substrate. Although substantial progress for various applications has already been demonstrated on d ifferent platforms, the range of diversified manipulation of photonic states on demand on a single chip has remained limited, especially dynamic time management. Here, we demonstrate an electro-optic device, including photon pair generation, propagation, electro-optical path routing, as well as a voltage-controllable time delay of up to ~ 12 ps on a single Ti:LIbO3 waveguide chip. As an example, we demonstrate Hong-Ou-Mandel interference with a visibility of more than 93$pm$ 1.8%. Our chip not only enables the deliberate manipulation of photonic states by rotating the polarization but also provides precise time control. Our experiment reveals that we have full flexible control over single-qubit operations by harnessing the complete potential of fast on-chip electro-optic modulation.
107 - Joris Mulder 2021
A Bayes factor is proposed for testing whether the effect of a key predictor variable on the dependent variable is linear or nonlinear, possibly while controlling for certain covariates. The test can be used (i) when one is interested in quantifying the relative evidence in the data of a linear versus a nonlinear relationship and (ii) to quantify the evidence in the data in favor of a linear relationship (useful when building linear models based on transformed variables). Under the nonlinear model, a Gaussian process prior is employed using a parameterization similar to Zellners $g$ prior resulting in a scale-invariant test. Moreover a Bayes factor is proposed for one-sided testing of whether the nonlinear effect is consistently positive, consistently negative, or neither. Applications are provides from various fields including social network research and education.
High speed optical telecommunication is enabled by wavelength division multiplexing, whereby hundreds of individually stabilized lasers encode the information within a single mode optical fiber. In the seek for larger bandwidth the optical power sent into the fiber is limited by optical non-linearities within the fiber and energy consumption of the light sources starts to become a significant cost factor. Optical frequency combs have been suggested to remedy this problem by generating multiple laser lines within a monolithic device, their current stability and coherence lets them operate only in small parameter ranges. Here we show that a broadband frequency comb realized through the electro-optic effect within a high quality whispering gallery mode resonator can operate at low microwave and optical powers. Contrary to the usual third order Kerr non-linear optical frequency combs we rely on the second order non-linear effect which is much more efficient. Our result uses a fixed microwave signal which is mixed with an optical pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to operate with microwave powers three order magnitude smaller than in commercially available devices. We can expect the implementation into the next generation long distance telecommunication which relies on coherent emission and detection schemes to allow for operation with higher optical powers and at reduced cost.
142 - Bofeng Gao , Mengxin Ren , Wei Wu 2021
Many applications of metasurfaces require an ability to dynamically change their properties in time domain. Electrical tuning techniques are of particular interest, since they pave a way to on-chip integration of metasurfaces with optoelectronic devi ces. In this work, we propose and experimentally demonstrate an electro-optic lithium niobate (EO-LN) metasurface that shows dynamic modulations to phase retardation of transmitted light. Quasi-bound states in the continuum (QBIC) are observed from our metasurface. And by applying external electric voltages, the refractive index of the LN is changed by Pockels EO nonlinearity, leading to efficient phase modulations to the transmitted light around the QBIC wavelength. Our EO-LN metasurface opens up new routes for potential applications in the field of displaying, pulse shaping, and spatial light modulating.
Molecular-scale manipulation of electronic/ionic charge accumulation in materials is a preeminent challenge, particularly in electrochemical energy storage. Layered van der Waals (vdW) crystals exemplify a diverse family of materials that permit ions to reversibly associate with a host atomic lattice by intercalation into interlamellar gaps. Motivated principally by the search for high-capacity battery anodes, ion intercalation in composite materials is a subject of intense study. Yet the precise role and ability of heterolayers to modify intercalation reactions remains elusive. Previous studies of vdW hybrids represented ensemble measurements at macroscopic films/powders, which do not permit the isolation and investigation of the chemistry at individual 2-dimensional (2D) interfaces. Here, we demonstrate the intercalation of lithium at the level of individual atomic interfaces of dissimilar vdW layers. Electrochemical devices based on vdW heterostructures comprised of deterministically stacked hexagonal boron nitride, graphene (G) and molybdenum dichalcogenide (MoX2; X = S, Se) layers are fabricated, enabling the direct resolution of intermediate stages in the intercalation of discrete heterointerfaces and the extent of charge transfer to individual layers. Operando magnetoresistance and optical spectroscopy coupled with low-temperature quantum magneto-oscillation measurements show that the creation of intimate vdW heterointerfaces between G and MoX2 engenders over 10-fold accumulation of charge in MoX2 compared to MoX2/MoX2 homointerfaces, while enforcing a more negative intercalation potential than that of bulk MoX2 by at least 0.5 V. Beyond energy storage, our new combined experimental and computational methodology to manipulate and characterize the electrochemical behavior of layered systems opens up new pathways to control the charge density in 2D (opto)electronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا