ﻻ يوجد ملخص باللغة العربية
SH$^+$ is a surprisingly widespread molecular ion in diffuse interstellar clouds. There, it plays an important role triggering the sulfur chemistry. In addition, SH$^+$ emission lines have been detected at the UV-illuminated edges of dense molecular clouds, mbox{so-called} photo-dissociation regions (PDRs), and toward high-mass protostars. An accurate determination of the SH$^+$ abundance and of the physical conditions prevailing in these energetic environments relies on knowing the rate coefficients of inelastic collisions between SH$^+$ molecules and hydrogen atoms, hydrogen molecules, and electrons. In this paper, we derive SH$^+$--H fine and hyperfine-resolved rate coefficients from the recent quantum calculations for the SH$^+$--H collisions, including inelastic, exchange and reactive processes. The method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 31 fine levels and 61 hyperfine levels of SH$^+$ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of $Delta j = Delta N$ transitions. The $Delta j = Delta F$ propensity rule is observed for the hyperfine transitions. {The new rate coefficients will help significantly in the interpretation of SH$^+$ spectra from PDRs and UV-irradiated shocks where the abundance of hydrogen atoms with respect to hydrogen molecules can be significant.
The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N$_2$H$^+$ is of particular interest since it was shown to be a good probe of the
Advances in merged-beams instruments have allowed experimental studies of the mutual neutralisation (MN) processes in collisions of both Li$^+$ and Na$^+$ ions with D$^-$ at energies below 1 eV. These experimental results place constraints on theoret
The rate constants for the formation, destruction, and collisional excitation of SH$^+$ are calculated from quantum mechanical approaches using two new SH$_2^+$ potential energy surfaces (PESs) of $^4A$ and $^2A$ electronic symmetry. The PESs were de
Using our deep optical and near-infrared photometry along with multiwavelength archival data, we here present a detailed study of the Galactic H II region Sh 2-305, to understand the star/star-cluster formation. On the basis of excess infra-red emiss
The generator-coordinate method is a flexible and powerful reformulation of the variational principle. Here we show that by introducing a generator coordinate in the Kohn-Sham equation of density-functional theory, excitation energies can be obtained