ﻻ يوجد ملخص باللغة العربية
With the deeper study of Higgs particle, Higgs precision measurements can be served to probe new physics indirectly. In many new physics models, vector-like quarks $T_L,~T_R$ occur naturally. It is important to probe their couplings with standard model particles. In this work, we consider the singlet $T_L,~T_R$ extended models and show how to constrain the $Tth$ couplings through the $hrightarrowgamma Z$ decay at high-luminosity LHC. Firstly, we derive the perturbative unitarity bounds on $|y_{L,~R}^{tT}|$ with other couplings set to be zeros simply. To optimize the situation, we take $m_T$ = 400 GeV and $s_L$ = 0.2 considering the experimental constraints. Under this benchmark point, we find that the future bounds from $hrightarrowgamma Z$ decay can limit the real parts of $y_{L,~R}^{tT}$ in the positive direction to be O(1) because of the double enhancement. For the real parts of $y_{L,~R}^{tT}$ in the negative direction, it is always surpassed by the perturbative unitarity. Moreover, we find that the top quark electric dipole moment can give stronger bounds (especially the imaginary parts of $y_{L,~R}^{tT}$) than the perturbative unitarity and $hrightarrowgamma Z$ decay in the off-axis regions for some scenarios.
We propose a class of Two Higgs Doublet Models where there are Flavour Changing Neutral Currents (FCNC) at tree level, but under control due to the introduction of a discrete symmetry in the full Lagrangian. It is shown that in this class of models,
We analyse various flavour changing processes like $tto hu,hc$, $hto tau e,taumu$ as well as hadronic decays $hto bs,bd$, in the framework of a class of two Higgs doublet models where there are flavour changing neutral scalar currents at tree level.
The $h(125)$ boson, discovered only in 2012, is lower than the top quark in mass, hence $t to ch$ search commenced immediately thereafter, with current limits at the per mille level and improving. As the $t to ch$ rate vanishes with the $h$-$H$ mixin
Rare $B$ meson decays offer an opportunity to probe a light hidden $Z$ boson. In this work we explore a new channel $B_q to gamma Z$ ($q = d, s$) followed by a cascade decay of $Z$ into an invisible (neutrino or dark matter) or charged lepton pair $e
We consider the Higgs boson decay processes and its production and provide a parameterisation tailored for testing models of new physics. The choice of a particular parameterisation depends on a non-obvious balance of quantity and quality of the avai