ﻻ يوجد ملخص باللغة العربية
We set out a simulation to explore the follow-up of exoplanet candidates. We look at comparing photometric (transit method) and spectroscopic (Doppler shift method) techniques using three instruments: NGTS, HARPS and CORALIE. We take into account precision of follow-up and required observing time in attempt to rank each method for a given set of planetary system parameters. The methods are assessed on two criteria, SNR of the detection and follow-up time before characterisation. We find that different follow-up techniques are preferred for different regions of parameter space. For SNR we find that the ratio of spectroscopic to photometric SNR for a given system goes like $R_p/P^{frac{1}{3}}$. For follow-up time we find that photometry is favoured for the shortest period systems ($<10$ d) as well as systems with small planet radii. Spectroscopy is then preferred for systems with larger radius, and thus more massive, planets (given our assumed mass-radius relationship). Finally, we attempt to account for availability of telescopes and weight the two methods accordingly.
Due to the efforts by numerous ground-based surveys and NASAs Kepler and TESS, there will be hundreds, if not thousands, of transiting exoplanets ideal for atmospheric characterization via spectroscopy with large platforms such as JWST and ARIEL. How
We present precision transit observations of the Neptune-sized planets K2-28b and K2-100b, using the Engineered Diffuser on the ARCTIC imager on the ARC 3.5m Telescope at Apache Point Observatory. K2-28b is a $R_{p} = 2.56 R_oplus$ mini-Neptune trans
Ariel has been selected as the next ESA M4 science mission and it is expected to be launched in 2028. During its 4-year mission, Ariel will observe the atmospheres of a large and diversified population of transiting exoplanets. A key factor for the a
We report a framework for spectroscopic follow-up design for optimizing supernova photometric classification. The strategy accounts for the unavoidable mismatch between spectroscopic and photometric samples, and can be used even in the beginning of a
We present photometric and spectroscopic follow-up observations of short-period variables discovered in the OmegaWhite survey: a wide-field high-cadence g-band synoptic survey targeting the Galactic Plane. We have used fast photometry on the SAAO 1.0