ﻻ يوجد ملخص باللغة العربية
As the advancement of deep learning (DL), the Internet of Things and cloud computing techniques for biomedical and healthcare problems, mobile healthcare systems have received unprecedented attention. Since DL techniques usually require enormous amount of computation, most of them cannot be directly deployed on the resource-constrained mobile and IoT devices. Hence, most of the mobile healthcare systems leverage the cloud computing infrastructure, where the data collected by the mobile and IoT devices would be transmitted to the cloud computing platforms for analysis. However, in the contested environments, relying on the cloud might not be practical at all times. For instance, the satellite communication might be denied or disrupted. We propose SAIA, a Split Artificial Intelligence Architecture for mobile healthcare systems. Unlike traditional approaches for artificial intelligence (AI) which solely exploits the computational power of the cloud server, SAIA could not only relies on the cloud computing infrastructure while the wireless communication is available, but also utilizes the lightweight AI solutions that work locally on the client side, hence, it can work even when the communication is impeded. In SAIA, we propose a meta-information based decision unit, that could tune whether a sample captured by the client should be operated by the embedded AI (i.e., keeping on the client) or the networked AI (i.e., sending to the server), under different conditions. In our experimental evaluation, extensive experiments have been conducted on two popular healthcare datasets. Our results show that SAIA consistently outperforms its baselines in terms of both effectiveness and efficiency.
This study evaluated generative methods to potentially mitigate AI bias when diagnosing diabetic retinopathy (DR) resulting from training data imbalance, or domain generalization which occurs when deep learning systems (DLS) face concepts at test/inf
Recently, deep neural networks have been outperforming conventional machine learning algorithms in many computer vision-related tasks. However, it is not computationally acceptable to implement these models on mobile and IoT devices and the majority
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif
There is a significant lack of unified approaches to building generally intelligent machines. The majority of current artificial intelligence research operates within a very narrow field of focus, frequently without considering the importance of the
As artificial intelligence (AI) systems become increasingly ubiquitous, the topic of AI governance for ethical decision-making by AI has captured public imagination. Within the AI research community, this topic remains less familiar to many researche