ﻻ يوجد ملخص باللغة العربية
Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principledriven methodologies to model complex chemical and materials processes. Over the last few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach and outlook.
Coupled cluster Greens function (CCGF) approach has drawn much attention in recent years for targeting the molecular and material electronic structure problems from a many-body perspective in a systematically improvable way. Here, we will present a b
In this talk I review the history of models of strong decays, from the original model through applications to charmonium, light and charmed mesons, glueballs and hybrids. Our current rather limited understanding of the QCD mechanism of strong decays
Anomaly mining is an important problem that finds numerous applications in various real world domains such as environmental monitoring, cybersecurity, finance, healthcare and medicine, to name a few. In this article, I focus on two areas, (1) point-c
We summarize the most significant aspects in the study of transverse spin phenomena over the last few decades, focusing on Semi-Inclusive Deep Inelastic Scattering processes and hadronic production in $e^+e^-$ annihilations. The phenomenology of tran
Experimental contributors to the field of Superconducting Materials share their informal views on the subject.