ترغب بنشر مسار تعليمي؟ اضغط هنا

NWChem: Past, Present, and Future

400   0   0.0 ( 0 )
 نشر من قبل Edoardo Apr\\`a
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principledriven methodologies to model complex chemical and materials processes. Over the last few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach and outlook.



قيم البحث

اقرأ أيضاً

Coupled cluster Greens function (CCGF) approach has drawn much attention in recent years for targeting the molecular and material electronic structure problems from a many-body perspective in a systematically improvable way. Here, we will present a b rief review of the history of how the Greens function method evolved with the wavefunction, early and recent development of CCGF theory, and more recently scalable CCGF software development. We will highlight some of the recent applications of CCGF approach and propose some potential applications that would emerge in the near future.
In this talk I review the history of models of strong decays, from the original model through applications to charmonium, light and charmed mesons, glueballs and hybrids. Our current rather limited understanding of the QCD mechanism of strong decays is stressed. Regarding current and future applications of strong decay models, we note that in certain channels the very strong coupling predicted between |qqbar> basis states and the two-meson continuum may lead to strongly mixed states and perhaps molecular two-meson bound states. The relevance to the D_{sJ}*(2317) is discussed.
175 - Leman Akoglu 2021
Anomaly mining is an important problem that finds numerous applications in various real world domains such as environmental monitoring, cybersecurity, finance, healthcare and medicine, to name a few. In this article, I focus on two areas, (1) point-c loud and (2) graph-based anomaly mining. I aim to present a broad view of each area, and discuss classes of main research problems, recent trends and future directions. I conclude with key take-aways and overarching open problems.
We summarize the most significant aspects in the study of transverse spin phenomena over the last few decades, focusing on Semi-Inclusive Deep Inelastic Scattering processes and hadronic production in $e^+e^-$ annihilations. The phenomenology of tran sverse momentum dependent distribution and fragmentation functions will be reviewed in an in-depth analysis of the most recent developments and of the future perspectives.
Experimental contributors to the field of Superconducting Materials share their informal views on the subject.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا