Neutrino Self-Interactions and Double Beta Decay


الملخص بالإنكليزية

Neutrino Self-Interactions ($ u$SI) beyond the Standard Model are an attractive possibility to soften cosmological constraints on neutrino properties and also to explain the tension in late and early time measurements of the Hubble expansion rate. The required strength of $ u$SI to explain the $4sigma$ Hubble tension is in terms of a point-like effective four-fermion coupling that can be as high as $10^9, G_F$, where $G_F$ is the Fermi constant. In this work, we show that such strong $ u$SI can cause significant effects in two-neutrino double beta decay, leading to an observable enhancement of decay rates and to spectrum distortions. We analyze self-interactions via an effective operator as well as when mediated by a light scalar. Data from observed two-neutrino double beta decay is used to constrain $ u$SI, which rules out the regime around $10^9, G_F$.

تحميل البحث