ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning photon statistics with coherent fields

105   0   0.0 ( 0 )
 نشر من قبل Elena del Valle Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photon correlations, as measured by Glaubers $n$-th order coherence functions $g^{(n)}$, are highly sought to be minimized and/or maximized. In systems that are coherently driven, so-called blockades can give rise to strong correlations according to two scenarios based on level-repulsion (conventional blockade) or interferences (unconventional blockade). Here we show how these two approaches relate to the admixing of a coherent state with a quantum state such as a squeezed state for the simplest and most recurrent case. The emission from a variety of systems, such as resonance fluorescence, the Jaynes-Cummings model or microcavity polaritons, as a few examples of a large family of quantum optical sources, are shown to be particular cases of such admixtures, that can further be doctored-up externally by adding an amplitude- and phase-controlled coherent field with the effect of tuning the photon statistics from exactly zero to infinity. We show how such an understanding also allows to classify photon statistics throughout platforms according to conventional and unconventional features, with the effect of optimizing the correlations and with possible spectroscopic applications. In particular, we show how configurations that can realize simultaneously conventional and unconventional antibunching bring the best of both worlds: huge antibunching (unconventional) with large populations and being robust to dephasing (conventional).



قيم البحث

اقرأ أيضاً

We describe a cavity-enhanced spontaneous parametric down-conversion (CE-SPDC) source for narrowband photon pairs with filters such that over 97% of the correlated photons are in a single mode of 4.3(4) MHz bandwidth. Type-II phase matching, a tuneab le-birefringence resonator, MHz-resolution pump tuning, and tuneable Fabry-Perot filters are used to achieve independent signal and idler tuning. We map the CE-SPDC spectrum using difference frequency generation to precisely locate the emission clusters, and demonstrate CE-SPDC driven atomic spectroscopy. The generated photon pairs efficiently interact with neutral rubidium, a well-developed system for quantum networking and quantum simulation. The techniques are readily extensible to other material systems.
The photon statistics and bunching of a semiconductor laser with external optical feedback are investigated experimentally and theoretically. In a chaotic regime, the photon number distribution is measured and undergoes a transition from Bose-Einstei n distribution to Poisson distribution with increasing the mean photon number. The second order degree of coherence decreases gradually from 2 to 1. Based on Hanbury Brown-Twiss scheme, pronounced photon bunching is observed experimentally for various injection currents and feedback strengths, which indicates the randomness of the associated emission light. Near-threshold injection currents and strong feedback strengths modify exactly the laser performance to be more bunched. The macroscopic chaotic dynamics is confirmed simultaneously by high-speed analog detection. The theoretical results qualitatively agree with the experimental results. It is potentially useful to extract randomness and achieve desired entropy source for random number generator and imaging science by quantifying the control parameters.
We review our most recent results on application of the photon subtraction technique for optical quantum information processing primitives, in particular entanglement distillation and generation of squeezed qubit states. As an introduction we provide a brief summary of other experimental accomplishments in the field.
83 - Sheng-Wen Li , Fu Li , Tao Peng 2019
When a laser beam passes through a rotating ground glass (RGG), the scattered light exhibits thermal statistics. This is extensively used in speckle imaging. This scattering process has not been addressed in photon picture and is especially relevant if non-classical light is scattered by the RGG. We develop the photon picture for the scattering process using the Bose statistics for distributing $N$ photons in $M$ pixels. We obtain analytical form for the P-distribution of the output field in terms of the P-distribution of the input field. In particular we obtain a general relation for the $n$-th order correlation function of the scattered light, i.e., $g_{text{out}}^{(n)}simeq n!,g_{text{in}}^{(n)}$, which holds for any order-$n$ and for arbitrary input states. This result immediately recovers the classical transformation of coherent light to pseudo-thermal light by RGG.
We theoretically consider wave mixing under the irradiation of a single qubit by two photon fields. The first signal is a classical monochromatic drive, while the second one is a nonclassical light. Particularly, we address two examples of a nonclass ical light: (i) a broadband squeezed light and (ii) a periodically excited quantum superposition of Fock states with 0 and 1 photons. The mixing of classical and nonclassical photon fields gives rise to side peaks due to the elastic multiphoton scattering. We show that side peaks structure is distinct from the situation when two classical fields are mixed. The most striking feature is that some peaks are absent. The analysis of peak amplitudes can be used to probe photon statistics in the nonclassical mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا