ﻻ يوجد ملخص باللغة العربية
Photon correlations, as measured by Glaubers $n$-th order coherence functions $g^{(n)}$, are highly sought to be minimized and/or maximized. In systems that are coherently driven, so-called blockades can give rise to strong correlations according to two scenarios based on level-repulsion (conventional blockade) or interferences (unconventional blockade). Here we show how these two approaches relate to the admixing of a coherent state with a quantum state such as a squeezed state for the simplest and most recurrent case. The emission from a variety of systems, such as resonance fluorescence, the Jaynes-Cummings model or microcavity polaritons, as a few examples of a large family of quantum optical sources, are shown to be particular cases of such admixtures, that can further be doctored-up externally by adding an amplitude- and phase-controlled coherent field with the effect of tuning the photon statistics from exactly zero to infinity. We show how such an understanding also allows to classify photon statistics throughout platforms according to conventional and unconventional features, with the effect of optimizing the correlations and with possible spectroscopic applications. In particular, we show how configurations that can realize simultaneously conventional and unconventional antibunching bring the best of both worlds: huge antibunching (unconventional) with large populations and being robust to dephasing (conventional).
We describe a cavity-enhanced spontaneous parametric down-conversion (CE-SPDC) source for narrowband photon pairs with filters such that over 97% of the correlated photons are in a single mode of 4.3(4) MHz bandwidth. Type-II phase matching, a tuneab
The photon statistics and bunching of a semiconductor laser with external optical feedback are investigated experimentally and theoretically. In a chaotic regime, the photon number distribution is measured and undergoes a transition from Bose-Einstei
We review our most recent results on application of the photon subtraction technique for optical quantum information processing primitives, in particular entanglement distillation and generation of squeezed qubit states. As an introduction we provide
When a laser beam passes through a rotating ground glass (RGG), the scattered light exhibits thermal statistics. This is extensively used in speckle imaging. This scattering process has not been addressed in photon picture and is especially relevant
We theoretically consider wave mixing under the irradiation of a single qubit by two photon fields. The first signal is a classical monochromatic drive, while the second one is a nonclassical light. Particularly, we address two examples of a nonclass