ﻻ يوجد ملخص باللغة العربية
It is difficult to discover pulsars via their gamma-ray emission because current instruments typically detect fewer than one photon per million rotations. This creates a significant computing challenge for isolated pulsars, where the typical parameter search space spans wide ranges in four dimensions. It is even more demanding when the pulsar is in a binary system, where the orbital motion introduces several additional unknown parameters. Building on earlier work by Pletsch & Clark (arXiv:1408.6962), we present optimal methods for such searches. These can also incorporate external constraints on the parameter space to be searched, for example, from optical observations of a presumed binary companion. The solution has two parts. The first is the construction of optimal search grids in parameter space via a parameter-space metric, for initial semicoherent searches and subsequent fully coherent follow-ups. The second is a method to demodulate and detect the periodic pulsations. These methods have different sensitivity properties than traditional radio searches for binary pulsars and might unveil new populations of pulsars.
Millisecond pulsars, old neutron stars spun-up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such recycled rotation-powered pulsars have been detected by their spin-modu
We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a fo
We present precise phase-connected pulse timing solutions for 16 gamma-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more
Observations of an optical source coincident with gravitational wave emission detected from a binary neutron star coalescence will improve the confidence of detection, provide host galaxy localisation, and test models for the progenitors of short gam
One aspect of the quantum nature of spacetime is its foaminess at very small scales. Many models for spacetime foam are defined by the accumulation power $alpha$, which parameterizes the rate at which Planck-scale spatial uncertainties (and thephase