ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Tensor Ring Completion

230   0   0.0 ( 0 )
 نشر من قبل Zhen Long
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Tensor completion can estimate missing values of a high-order data from its partially observed entries. Recent works show that low rank tensor ring approximation is one of the most powerful tools to solve tensor completion problem. However, existing algorithms need predefined tensor ring rank which may be hard to determine in practice. To address the issue, we propose a hierarchical tensor ring decomposition for more compact representation. We use the standard tensor ring to decompose a tensor into several 3-order sub-tensors in the first layer, and each sub-tensor is further factorized by tensor singular value decomposition (t-SVD) in the second layer. In the low rank tensor completion based on the proposed decomposition, the zero elements in the 3-order core tensor are pruned in the second layer, which helps to automatically determinate the tensor ring rank. To further enhance the recovery performance, we use total variation to exploit the locally piece-wise smoothness data structure. The alternating direction method of multiplier can divide the optimization model into several subproblems, and each one can be solved efficiently. Numerical experiments on color images and hyperspectral images demonstrate that the proposed algorithm outperforms state-of-the-arts ones in terms of recovery accuracy.



قيم البحث

اقرأ أيضاً

121 - Qianxi Wu , An-Bao Xu 2021
Tensor decomposition is a popular technique for tensor completion, However most of the existing methods are based on linear or shallow model, when the data tensor becomes large and the observation data is very small, it is prone to over fitting and t he performance decreases significantly. To address this problem, the completion method for a tensor based on a Biased Deep Tensor Factorization Network (BDTFN) is proposed. This method can not only overcome the shortcomings of traditional tensor factorization, but also deal with complex non-linear data. Firstly, the horizontal and lateral tensors corresponding to the observed values of the input tensors are used as inputs and projected to obtain their horizontal (lateral) potential feature tensors. Secondly, the horizontal (lateral) potential feature tensors are respectively constructed into a multilayer perceptron network. Finally, the horizontal and lateral output tensors are fused by constructing a bilinear pooling layer. Tensor forward-propagation is composed of those three step, and its parameters are updated by tensor back-propagation using the multivariable chain rule. In this paper, we consider the large-scale 5-minute traffic speed data set and use it to address the missing data imputation problem for large-scale spatiotemporal traffic data. In addition, we compare the numerical performance of the proposed algorithm with those for state-of-the-art approaches on video recovery and color image recovery. Numerical experimental results illustrate that our approach is not only much more accurate than those state-of-the-art methods, but it also has high speed.
105 - Yongming Zheng , An-Bao Xu 2020
In this paper, we consider the tensor completion problem, which has many researchers in the machine learning particularly concerned. Our fast and precise method is built on extending the $L_{2,1}$-norm minimization and Qatar Riyal decomposition (LNM- QR) method for matrix completions to tensor completions, and is different from the popular tensor completion methods using the tensor singular value decomposition (t-SVD). In terms of shortening the computing time, t-SVD is replaced with the method computing an approximate t-SVD based on Qatar Riyal decomposition (CTSVD-QR), which can be used to compute the largest $r left(r>0 right)$ singular values (tubes) and their associated singular vectors (of tubes) iteratively. We, in addition, use the tensor $L_{2,1}$-norm instead of the tensor nuclear norm to minimize our model on account of it is easy to optimize. Then in terms of improving accuracy, ADMM, a gradient-search-based method, plays a crucial part in our method. Numerical experimental results show that our method is faster than those state-of-the-art algorithms and have excellent accuracy.
292 - An-Bao Xu 2020
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor c ompletions. The method performs a tensor factorization using the tensor singular value decomposition (t-SVD) which extends the standard matrix SVD to tensors. The t-SVD leads to a notion of rank, called tubal-rank here. We want to recreate the data in tensors from low resolution samples as best we can here. To complete a low resolution tensor successfully we assume that the given tensor data has low tubal-rank. For tensors of low tubal-rank, we establish convergence results for our method that are based on the tensor restricted isometry property (TRIP). Our result with the TRIP condition for tensors is similar to low-rank matrix completions under the RIP condition. The TRIP condition uses the t-SVD for low tubal-rank tensors, while RIP uses the SVD for matrices. We show that a subgaussian measurement map satisfies the TRIP condition with high probability and gives an almost optimal bound on the number of required measurements. We compare the numerical performance of the proposed algorithm with those for state-of-the-art approaches on video recovery and color image recovery.
Tensor decompositions such as the canonical format and the tensor train format have been widely utilized to reduce storage costs and operational complexities for high-dimensional data, achieving linear scaling with the input dimension instead of expo nential scaling. In this paper, we investigate even lower storage-cost representations in the tensor ring format, which is an extension of the tensor train format with variable end-ranks. Firstly, we introduce two algorithms for converting a tensor in full format to tensor ring format with low storage cost. Secondly, we detail a rounding operation for tensor rings and show how this requires new definitions of common linear algebra operations in the format to obtain storage-cost savings. Lastly, we introduce algorithms for transforming the graph structure of graph-based tensor formats, with orders of magnitude lower complexity than existing literature. The efficiency of all algorithms is demonstrated on a number of numerical examples, and in certain cases, we demonstrate significantly higher compression ratios when compared to previous approaches to using the tensor ring format.
210 - Huyan Huang , Yipeng Liu , Ce Zhu 2019
Low-rank tensor completion recovers missing entries based on different tensor decompositions. Due to its outstanding performance in exploiting some higher-order data structure, low rank tensor ring has been applied in tensor completion. To further de al with its sensitivity to sparse component as it does in tensor principle component analysis, we propose robust tensor ring completion (RTRC), which separates latent low-rank tensor component from sparse component with limited number of measurements. The low rank tensor component is constrained by the weighted sum of nuclear norms of its balanced unfoldings, while the sparse component is regularized by its l1 norm. We analyze the RTRC model and gives the exact recovery guarantee. The alternating direction method of multipliers is used to divide the problem into several sub-problems with fast solutions. In numerical experiments, we verify the recovery condition of the proposed method on synthetic data, and show the proposed method outperforms the state-of-the-art ones in terms of both accuracy and computational complexity in a number of real-world data based tasks, i.e., light-field image recovery, shadow removal in face images, and background extraction in color video.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا