ﻻ يوجد ملخص باللغة العربية
We examined the formation mechanisms of magnetic bubbles in an M-type hexaferrite via Lorentz microscopy. When magnetic fields were perpendicularly applied to a thin sample of BaFe$_{12-x-0.05}$Sc$_x$Mg$_{0.05}$O$_{19}$ ($x = 1.6$), Bloch lines, which were identified as reversals of domain-wall chirality, appeared, and magnetic bubbles were formed when the magnetic stripes were pinched off at these Bloch lines. The number of Bloch lines increased with the amount of Sc in BaFe$_{12-x-0.05}$Sc$_x$Mg$_{0.05}$O$_{19}$ probably because of the reduction in magnetic anisotropy. A Lorentz microscopic observation revealed that Bloch lines with high magnetostatic energy may play an important role in the formation of magnetic bubbles.
The chirality-dependent magnetoelectric properties of Neel-type domain walls in iron garnet films is observed. The electrically driven magnetic domain wall motion changes the direction to the opposite with the reversal of electric polarity of the pro
We use first-principles total-energy calculations based on density functional theory to study the site occupancy and magnetic properties of Al-substituted $M$-type strontium hexaferrite SrFe$_{12-x}$Al$_{x}$O$_{19}$ with $x=0.5$ and $x=1.0$. We find
The behavior of antiferromagnetic domain wall (ADW) against the background of a periodic ferroelectric domain structure has been investigated. It has been shown that the structure and the energy of ADW change due to the interaction with a ferroelectr
Magnetic domain walls in thin films can be well analyzed using polarized neutron reflectometry. Well defined streaks in the off-specular spin-flip scattering maps are explained by neutron refraction at perpendicular N{e}el walls. The position of the
The control of domain walls or spin textures is crucial for spintronic applications of antiferromagnets. Despite many efforts, it has been challenging to directly visualize antiferromagnetic domains or domain walls with nanoscale resolution, especial