ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: radiation-induced omega phase transformation in Ti-6Al-4V

66   0   0.0 ( 0 )
 نشر من قبل Taku Ishida
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A high-intensity proton beam exposure with 181 MeV energy has been conducted at Brookhaven Linac Isotope Producer facility on various material specimens for accelerator targetry applications, including titanium alloys as a beam window material. The radiation damage level of the analyzed capsule was 0.25 dpa at beam center region with an irradiation temperature around 120 degree C. Tensile tests showed increased hardness and a large decrease in ductility for the dual alpha+beta-phase Ti-6Al-4V Grade-5 and Grade-23 extra low interstitial alloys, with the near alpha-phase Ti-3Al-2.5V Grade-9 alloy still exhibiting uniform elongation of a few % after irradiation. Transmission Electron Microscope analyses on Ti-6Al-4V indicated clear evidence of a high-density of defect clusters with size less than 2 nm in each alpha-phase grain. The beta-phase grains did not contain any visible defects such as loops or black dots, while the diffraction patterns clearly indicated omega-phase precipitation in an advanced formation stage. The radiation-induced omega-phase transformation in the beta-phase could lead to greater loss of ductility in Ti-6Al-4V alloys in comparison with Ti-3Al-2.5V alloy with less beta-phase.



قيم البحث

اقرأ أيضاً

A high-strength dual alpha+beta phase titanium alloy Ti-6Al-4V is utilized as a material for beam windows in several accelerator target facilities. However, relatively little is known about how material properties of this alloy are affected by high-i ntensity proton beam irradiation. With plans to upgrade neutrino facilities at J-PARC and Fermilab to over 1 MW beam power, the radiation damage in the window material will reach a few displacements per atom (dpa) per year, significantly above the ~0.3 dpa level of existing data. The RaDIATE collaboration has conducted a high intensity proton beam irradiation of various target and window material specimens at BLIP facility, including a variety of titanium alloys. Post-Irradiation Examination of the specimens in the 1st capsule, irradiated at up to 0.25 dpa, is in progress. Tensile tests in a hot cell at PNNL exhibited a clear signature of radiation hardening and loss of ductility for Ti-6Al-4V, while Ti-3Al-2.5V, with less beta phase, exhibited less severe hardening. Microstructural investigations will follow to study the cause of the difference in tensile behavior between these alloys. High-cycle fatigue (HCF) performance is critical to the lifetime estimation of beam windows exposed to a periodic thermal stress from a pulsed proton beam. The 1st HCF data on irradiated titanium alloys are to be obtained by a conventional bend fatigue test at Fermilab and by an ultrasonic mesoscale fatigue test at Culham Laboratory. Specimens in the 2nd capsule, irradiated at up to ~1 dpa, cover typical titanium alloy grades, including possible radiation-resistant candidates. These systematic studies on the effects of radiation damage of titanium alloys are intended to enable us to predict realistic lifetimes of current beam windows made of Ti-6Al-4V and to extend the lifetime by choosing a more radiation and thermal shock tolerant alloy.
In this work we study the performance of silicon photomultiplier (SiPM) light sensors after exposure to the JULIC cyclotron proton beam, of energy $sim$ 39 MeV, relative to their performance before exposure. The SiPM devices used in this study show a significant change in their behavior and downward shift of their breakdown voltage by as much as $sim$ 0.4$pm$0.1 V. Single photon measurements appear to be no longer possible for the SiPMs under study after exposure to a dose of $sim$ 0.2 Gy (corresponding to an integrated proton flux of $sim$$phi_{p}$=1.06x10$^{8}$ p/cm$^{2}$). No visible damage to the surface of the devices was caused by the exposure.
The SNO+ experiment collected data as a low-threshold water Cherenkov detector from September 2017 to July 2019. Measurements of the 2.2-MeV $gamma$ produced by neutron capture on hydrogen have been made using an Am-Be calibration source, for which a large fraction of emitted neutrons are produced simultaneously with a 4.4-MeV $gamma$. Analysis of the delayed coincidence between the 4.4-MeV $gamma$ and the 2.2-MeV capture $gamma$ revealed a neutron detection efficiency that is centered around 50% and varies at the level of 1% across the inner region of the detector, which to our knowledge is the highest efficiency achieved among pure water Cherenkov detectors. In addition, the neutron capture time constant was measured and converted to a thermal neutron-proton capture cross section of $336.3^{+1.2}_{-1.5}$ mb.
138 - Qing Lin , Yuehuan Wei , Jie Bao 2013
Dual phase Xenon Time Projection Chambers (XeTPCs) are being used by several experiments as a promising technique for direct detection of dark matter. We report on the design and performance of a small 3-D sensitive dual phase XeTPC. The position res olution is 2 mm in the center of detector, limited by the hole size of the mesh at the proportional scintillation region. An energy resolution of 1.6%({sigma} /E) for 662 keV gamma rays is achieved by combining the ionization and scintillation signals at a drift field of 0.5 kV/cm. This represents the best energy resolution achieved among liquid xenon detectors. The energy resolution is only slightly dependent on drift field. Better than 2% energy resolution ({sigma} /E) for 662 keV gamma rays can be achieved for drift fields between 100 V/cm and 2 kV/cm. With high position and energy resolutions, a dual phase XeTPC has also potential applications in surveys for neutrinoless double-beta decay and in gamma ray imaging.
We present the performance of multiplexed XY resistive Micromegas detectors tested in the CERN SPS 100 GeV/c electron beam at intensities up to 3.3 $times$ 10$^5$ e$^- $/(s$cdot$cm$^2$). So far, all studies with multiplexed Micromegas have only been reported for tests with radioactive sources and cosmic rays. The use of multiplexed modules in high intensity environments was not explored due to the effect of ambiguities in the reconstruction of the hit point caused by the multiplexing feature. At the beam intensities analysed in this work and with a multiplexing factor of 5, more than 50% level of ambiguity is introduced. Our results prove that by using the additional information of cluster size and integrated charge from the signal clusters induced on the XY strips, the ambiguities can be reduced to a level below 2%. The tested detectors are used in the CERN NA64 experiment for tracking the incoming particles bending in a magnetic field in order to reconstruct their momentum. The average hit detection efficiency of each module was found to be $sim$ 96% at the highest beam intensities. By using four modules a tracking resolution of 1.1% was obtained with $sim$ 85% combined tracking efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا