ﻻ يوجد ملخص باللغة العربية
Motivated by the question of whether all fast scramblers are holographically dual to quantum gravity, we study the dynamics of a non-integrable spin chain model composed of two ingredients - a nearest neighbor Ising coupling, and an infinite range $XX$ interaction. Unlike other fast scrambling many-body systems, this model is not known to be dual to a black hole. We quantify the spreading of quantum information using an out-of time-ordered correlator (OTOC), and demonstrate that our model exhibits fast scrambling for a wide parameter regime. Simulation of its quench dynamics finds that the rapid decline of the OTOC is accompanied by a fast growth of the entanglement entropy, as well as a swift change in the magnetization. Finally, potential realizations of our model are proposed in current experimental setups. Our work establishes a promising route to create fast scramblers.
Given a quantum many-body system with few-body interactions, how rapidly can quantum information be hidden during time evolution? The fast scrambling conjecture is that the time to thoroughly mix information among N degrees of freedom grows at least
We study from the perspective of quantum information scrambling an acoustic black hole modelled by two semi-infinite, stationary, one dimensional condensates, connected by a spatial step-like discontinuity, and flowing respectively at subsonic and su
We demonstrate that a holographic model of the Einstein-Podolsky-Rosen pair exhibits fast scrambling. Strongly entangled quark and antiquark in $mathcal{N}=4$ super Yang-Mills theory are considered. Their gravity dual is a fundamental string whose en
We study information scrambling, as diagnosed by the out-of-time order correlations (OTOCs), in a system of large spins collectively interacting via spatially inhomogeneous and incommensurate exchange couplings. The model is realisable in a cavity QE
Interesting theories with short range interactions include QCD in the hadronic phase and cold atom systems. The scattering length in two-to-two elastic scattering process captures the most elementary features of the interactions, such as whether they