ﻻ يوجد ملخص باللغة العربية
Radical pair recombination reactions are known to be sensitive to extremely weak magnetic fields, and can therefore be said to function as molecular magnetoreceptors. The classic example is a carotenoid-porphyrin-fullerene (C+PF-) radical pair that has been shown to provide a proof-of-principle for the operation of a chemical compass [K. Maeda et al., Nature 453, 387 (2008)]. Previous simulations of this radical pair have employed semiclassical approximations, which are routinely applicable to its 47 coupled electronic and nuclear spins. However, calculating the exact quantum mechanical spin dynamics presents a significant challenge, and has not been possible before now. Here we use a recently developed method to perform numerically converged simulations of the C+PF- quantum mechanical spin dynamics, including all coupled spins. Comparison of these quantum mechanical simulations with various semiclassical approximations reveals that, while it is not perfect, the best semiclassical approximation does capture essentially all of the relevant physics in this problem.
We propose a trajectory-based method for simulating nonadiabatic dynamics in molecular systems with two coupled electronic states. Employing a quantum-mechanically exact mapping of the two-level problem to a spin-1/2 coherent state, we construct a cl
Ab initio molecular dynamics (AIMD) is a valuable technique for studying molecules and materials at finite temperatures where the nuclei evolve on potential energy surfaces obtained from accurate electronic structure calculations. In this work, a qua
Recently, a new class of carbon allotrope called protomene was proposed. This new structure is composed of sp2 and sp3 carbon-bonds. Topologically, protomene can be considered as an sp3 carbon structure (~80% of this bond type) doped by sp2 carbons.
We present a new non-adiabatic ring polymer molecular dynamics (NRPMD) method based on the spin mapping formalism, which we refer to as the spin-mapping NRPMD (SM-NRPMD) approach. We derive the path-integral partition function expression using the sp
We show that the centroid molecular dynamics (CMD) method provides a realistic way to calculate the thermal diffusivity $a=lambda/rho c_{rm V}$ of a quantum mechanical liquid such as para-hydrogen. Once $a$ has been calculated, the thermal conductivi