ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic Orbits of Eleven Nearby, Mid-to-Late M Dwarf Binaries

82   0   0.0 ( 0 )
 نشر من قبل Jennifer Winters
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the spectroscopic orbits of eleven nearby, mid-to-late M dwarf binary systems in a variety of configurations: two single-lined binaries (SB1s), seven double-lined binaries (SB2s), one double-lined triple (ST2), and one triple-lined triple (ST3). Eight of these orbits are the first published for these systems, while five are newly identified multiples. We obtained multi-epoch, high-resolution spectra with the TRES instrument on the 1.5m Tillinghast Reflector at the Fred Lawrence Whipple Observatory located on Mt. Hopkins in AZ. Using the TiO molecular bands at 7065 -- 7165 Angstroms, we calculated radial velocities for these systems, from which we derived their orbits. We find LHS 1817 to have in a 7-hour period a companion that is likely a white dwarf, due to the ellipsoidal modulation we see in our MEarth-North light curve data. We find G 123-45 and LTT 11586 to host companions with minimum masses of 41 M_Jup and 44 M_Jup with orbital periods of 35 and 15 days, respectively. We find 2MA 0930+0227 to have a rapidly rotating stellar companion in a 917-day orbital period. GJ 268, GJ 1029, LP 734-34, GJ 1182, G 258-17, and LTT 7077 are SB2s with stellar companions with orbital periods of 10, 96, 34, 154, 5, and 84 days; LP 655-43 is an ST3 with one companion in an 18-day orbital period and an outer component in a longer undetermined period. In addition, we present radial velocities for both components of L 870-44AB and for the outer components of LTT 11586 and LP 655-43.



قيم البحث

اقرأ أيضاً

M dwarfs are ideal targets for the search of Earth-size planets in the habitable zone using the radial velocity method, attracting the attention of many ongoing surveys. As a by-product of these surveys, new multiple stellar systems are also found. T his is the case also for the CARMENES survey, from which nine new SB2 systems have already been announced. Throughout the five years of the survey, the accumulation of new observations has resulted in the detection of several new multiple stellar systems with long periods and low radial-velocity amplitudes. Here, we newly characterise the spectroscopic orbits and constrain the masses of eight systems and update the properties of a system that we reported earlier. We derive the radial velocities of the stars using two-dimensional cross correlation techniques and template matching. The measurements are modelled to determine the orbital parameters of the systems. We combine CARMENES spectroscopic observations with archival high-resolution spectra from other instruments to increase the time-span of the observations and improve our analysis. When available, we also added archival photometric, astrometric, and adaptive optics imaging data to constrain the rotation periods and absolute masses of the components. We determine the spectroscopic orbits of nine multiple systems, eight of which are presented for the first time. The sample is composed of five SB1s, two SB2s, and two ST3s. The companions of two of the single-line binaries, GJ 3626 and GJ 912, have minimum masses below the stellar boundary and, thus, could be brown dwarfs. We find a new white dwarf in a close binary orbit around the M star GJ 207.1. From a global fit to radial velocities and astrometric measurements, we are able to determine the absolute masses of the components of GJ 282C, which is one of the youngest systems with measured dynamical masses.
Hubble Space Telescope (HST) Fine Guidance Sensor (FGS) trigonometric parallax observations were obtained to directly determine distances to five nearby M-dwarf / M-dwarf eclipsing binary systems. These systems are intrinsically interesting as benchm ark systems for establishing basic physical parameters for low-mass stars, such as luminosity L, and radius R. HST/FGS distances are also one of the few direct checks on Gaia trigonometric parallaxes, given the comparable sensitivity in both magnitude limit and determination of parallactic angles. A spectral energy distribution (SED) fit of each systems blended flux output was carried out, allowing for estimation of the bolometric flux from the primary and secondary components of each system. From the stellar M, L, and R values, the low-mass star relationships between L and M, and R and M, are compared against idealized expectations for such stars. An examination on the inclusion of these close M-dwarf/M-dwarf pairs in higher-order common proper motion (CPM) pairs is analysed; each of the 5 systems has indications of being part of a CPM system. Unexpected distances on interesting objects found within the grid of parallactic reference stars are also presented, including a nearby M dwarf and a white dwarf.
M-dwarfs in extremely wide binary systems are very rare, and may thus have different formation processes from those found as single stars or close binaries in the field. In this paper we search for close companions to a new sample of 36 extremely wid e M-dwarf binaries, covering a spectral type range of M1 to M5 and a separation range of 600 - 6500 AU. We discover 10 new triple systems and one new quadruple system. We carefully account for selection effects including proper motion, magnitude limits, the detection of close binaries in the SDSS, and other sample biases. The bias-corrected total high-order-multiple fraction is 45% (+18%/-16%) and the bias-corrected incidence of quadruple systems is < 5%, both statistically compatible with that found for the more common close M-dwarf multiple systems. Almost all the detected companions have similar masses to their primaries, although two very low mass companions, including a candidate brown dwarf, are found at relatively large separations. We find that the close-binary separation distribution is strongly peaked towards < 30AU separations. There is marginally significant evidence for a change in high-order M-dwarf multiplicity with binding energy and total mass. We also find 2-sigma evidence of an unexpected increased high-order-multiple fraction for the widest targets in our survey, with a high-order-multiple fraction of 21% (+17%/-7%) for systems with separations up to 2000AU, compared to 77% (+9%/-22%) for systems with separations > 4000AU. These results suggest that the very widest M-dwarf binary systems need higher masses to form or to survive.
108 - R. F. Griffin , N. Filiz Ak 2010
We present spectroscopic orbits for the active stars HD 82159 (GS Leo), HD 89959, BD +39 2587 (a visual companion to HD 112733), HD 138157 (OX Ser), HD 143705, and HD 160934. This paper is a sequel to one published in this journal in 2006, with simil ar avowed intention, by Galvez et al.. They showed only graphs, and gave no data, and no orbital elements apart from the periods (only two of which were correct) and in some cases the eccentricities. Here we provide full information and reliable orbital elements for all the stars apart from HD 160934, which has not completed a cycle since it was first observed for radial velocity.
Barium stars are thought to result from binary evolution in systems wide enough to allow the more massive component to reach the asymptotic giant branch and eventually become a CO white dwarf. While Ba stars were initially known only among giant or s ubgiant stars, some were subsequently discovered also on the main sequence (and known as dwarf Ba stars). We provide here the orbital parameters of three dwarf Ba stars, completing the sample of 27 orbits published recently by Escorza et al. with these three southern targets. We show that these new orbital parameters are consistent with those of other dwarf Ba stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا