ﻻ يوجد ملخص باللغة العربية
An inelastic excitation and cluster-decay experiment $rm {^2H}(^{16}C,~{^{4}He}+{^{12}Be}~or~{^{6}He}+{^{10}Be}){^2H}$ was carried out to investigate the linear-chain clustering structure in neutron-rich $rm {^{16}C}$. For the first time, decay-paths from the $rm {^{16}C}$ resonances to various states of the final nuclei were determined, thanks to the well-resolved $Q$-value spectra obtained from the three-fold coincident measurement. The close-threshold resonance at 16.5 MeV is assigned as the ${J^pi}={0^+}$ band head of the predicted positive-parity linear-chain molecular band with ${(3/2_pi^-)^2}{(1/2_sigma^-)^2}$ configuration, according to the associated angular correlation and decay analysis. Other members of this band were found at 17.3, 19.4, and 21.6 MeV based on their selective decay properties, being consistent with the theoretical predictions. Another intriguing high-lying state was observed at 27.2 MeV which decays almost exclusively to $rm {^{6}He}+{^{10}Be{(sim6~ MeV)}}$ final channel, corresponding well to another predicted linear-chain structure with the pure $sigma$-bond configuration.
The structures of excited states in $^{34}$S are investigated using the antisymmetrized molecular dynamics and generator coordinate method (GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole def
We present a new picture that the $alpha$-linear-chain structure for ${^{12}{rm C}}$ and ${^{16}{rm O}}$ has one-dimensional $alpha$ condensate character. The wave functions of linear-chain states which are described by superposing a large number of
We investigate the linear-chain configurations of four-$alpha$ clusters in $^{16}$O using a Skyrme cranked Hartree-Fock method and discuss the relationship between the stability of such states and angular momentum. We show the existence of a region o
A cluster-transfer experiment $^9$Be($^9$Be,$^{14}$C$^*rightarrowalpha$+$^{10}$Be)$alpha$ was carried out using an incident beam energy of 45 MeV. This reaction channel has a large $Q$-value that favors populating the high-lying states in $^{14}$C an
The parity-transfer $({}^{16}{rm O},{}^{16}{rm F}(0^-,{rm g.s.}))$ reaction is presented as a new probe for investigating isovector $0^-$ states in nuclei. The properties of $0^-$ states provide a stringent test of the threshold density for pion cond