ترغب بنشر مسار تعليمي؟ اضغط هنا

PolyLaneNet: Lane Estimation via Deep Polynomial Regression

53   0   0.0 ( 0 )
 نشر من قبل Lucas Tabelini Torres
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the main factors that contributed to the large advances in autonomous driving is the advent of deep learning. For safer self-driving vehicles, one of the problems that has yet to be solved completely is lane detection. Since methods for this task have to work in real-time (+30 FPS), they not only have to be effective (i.e., have high accuracy) but they also have to be efficient (i.e., fast). In this work, we present a novel method for lane detection that uses as input an image from a forward-looking camera mounted in the vehicle and outputs polynomials representing each lane marking in the image, via deep polynomial regression. The proposed method is shown to be competitive with existing state-of-the-art methods in the TuSimple dataset while maintaining its efficiency (115 FPS). Additionally, extensive qualitative results on two additional public datasets are presented, alongside with limitations in the evaluation metrics used by recent works for lane detection. Finally, we provide source code and trained models that allow others to replicate all the results shown in this paper, which is surprisingly rare in state-of-the-art lane detection methods. The full source code and pretrained models are available at https://github.com/lucastabelini/PolyLaneNet.



قيم البحث

اقرأ أيضاً

Estimating the 3D pose of a hand is an essential part of human-computer interaction. Estimating 3D pose using depth or multi-view sensors has become easier with recent advances in computer vision, however, regressing pose from a single RGB image is m uch less straightforward. The main difficulty arises from the fact that 3D pose requires some form of depth estimates, which are ambiguous given only an RGB image. In this paper we propose a new method for 3D hand pose estimation from a monocular image through a novel 2.5D pose representation. Our new representation estimates pose up to a scaling factor, which can be estimated additionally if a prior of the hand size is given. We implicitly learn depth maps and heatmap distributions with a novel CNN architecture. Our system achieves the state-of-the-art estimation of 2D and 3D hand pose on several challenging datasets in presence of severe occlusions.
Nonlinear regression has been extensively employed in many computer vision problems (e.g., crowd counting, age estimation, affective computing). Under the umbrella of deep learning, two common solutions exist i) transforming nonlinear regression to a robust loss function which is jointly optimizable with the deep convolutional network, and ii) utilizing ensemble of deep networks. Although some improved performance is achieved, the former may be lacking due to the intrinsic limitation of choosing a single hypothesis and the latter usually suffers from much larger computational complexity. To cope with those issues, we propose to regress via an efficient divide and conquer manner. The core of our approach is the generalization of negative correlation learning that has been shown, both theoretically and empirically, to work well for non-deep regression problems. Without extra parameters, the proposed method controls the bias-variance-covariance trade-off systematically and usually yields a deep regression ensemble where each base model is both accurate and diversified. Moreover, we show that each sub-problem in the proposed method has less Rademacher Complexity and thus is easier to optimize. Extensive experiments on several diverse and challenging tasks including crowd counting, personality analysis, age estimation, and image super-resolution demonstrate the superiority over challenging baselines as well as the versatility of the proposed method.
Deep learning methods have achieved excellent performance in pose estimation, but the lack of robustness causes the keypoints to change drastically between similar images. In view of this problem, a stable heatmap regression method is proposed to all eviate network vulnerability to small perturbations. We utilize the correlation between different rows and columns in a heatmap to alleviate the multi-peaks problem, and design a highly differentiated heatmap regression to make a keypoint discriminative from surrounding points. A maximum stability training loss is used to simplify the optimization difficulty when minimizing the prediction gap of two similar images. The proposed method achieves a significant advance in robustness over state-of-the-art approaches on two benchmark datasets and maintains high performance.
In this paper, we study how to learn an appropriate lane changing strategy for autonomous vehicles by using deep reinforcement learning. We show that the reward of the system should consider the overall traffic efficiency instead of the travel effici ency of an individual vehicle. In summary, cooperation leads to a more harmonic and efficient traffic system rather than competition
The image-based lane detection algorithm is one of the key technologies in autonomous vehicles. Modern deep learning methods achieve high performance in lane detection, but it is still difficult to accurately detect lanes in challenging situations su ch as congested roads and extreme lighting conditions. To be robust on these challenging situations, it is important to extract global contextual information even from limited visual cues. In this paper, we propose a simple but powerful self-attention mechanism optimized for lane detection called the Expanded Self Attention (ESA) module. Inspired by the simple geometric structure of lanes, the proposed method predicts the confidence of a lane along the vertical and horizontal directions in an image. The prediction of the confidence enables estimating occluded locations by extracting global contextual information. ESA module can be easily implemented and applied to any encoder-decoder-based model without increasing the inference time. The performance of our method is evaluated on three popular lane detection benchmarks (TuSimple, CULane and BDD100K). We achieve state-of-the-art performance in CULane and BDD100K and distinct improvement on TuSimple dataset. The experimental results show that our approach is robust to occlusion and extreme lighting conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا