ﻻ يوجد ملخص باللغة العربية
Gravitational waves (GW) produced in the early Universe contribute to the number of relativistic degrees of freedom, $N_{rm eff}$, during Big Bang Nucleosynthesis (BBN). By using the constraints on $N_{rm eff}$, we present a new bound on how much the Universe could have expanded between horizon exit of the largest observable scales today and the end of inflation. We discuss the implications on inflationary models and show how the new constraints affect model selection. We also discuss the sensitivities of the current and planned GW observatories such as LIGO and LISA, and show that the constraints they could impose are always less stringent than the BBN bound.
Measuring the primordial power spectrum on small scales is a powerful tool in inflation model building, yet constraints from Cosmic Microwave Background measurements alone are insufficient to place bounds stringent enough to be appreciably effective.
We study the effects of the Gauss-Bonnet term on the energy spectrum of inflationary gravitational waves. The models of inflation are classified into two types based on their predictions for the tensor power spectrum: red-tilted ($n_T<0$) and blue-ti
Gravitational waves (GWs) are one of the key signatures of cosmic strings. If GWs from cosmic strings are detected in future experiments, not only their existence can be confirmed but also their properties might be probed. In this paper, we study the
We study Planck 2015 cosmic microwave background (CMB) anisotropy data using the energy density inhomogeneity power spectrum generated by quantum fluctuations during an early epoch of inflation in the non-flat XCDM model. Here dark energy is paramete
We put the upper bound on the gravitational waves (GWs) induced by the scalar-field fluctuations during the inflation. In particular, we focus on the case where the scalar fluctuations get amplified within some subhorizon scales by some mechanism dur