ﻻ يوجد ملخص باللغة العربية
We consider the task of secure multi-party distributed quantum computation on a quantum network. We propose a protocol based on quantum error correction which reduces the number of necessary qubits. That is, each of the $n$ nodes in our protocol requires an operational workspace of $n^2 + 4n$ qubits, as opposed to previously shown $Omegabig((n^3+n^2s^2)log nbig)$ qubits, where $s$ is a security parameter. Additionally, we reduce the communication complexity by a factor of $mathcal{O}(n^3log(n))$ qubits per node, as compared to existing protocols. To achieve universal computation, we develop a distributed procedure for verifying magic states, which allows us to apply distributed gate teleportation and which may be of independent interest. We showcase our protocol on a small example for a 7-node network.
Quantum conference is a process of securely exchanging messages between three or more parties, using quantum resources. A Measurement Device Independent Quantum Dialogue (MDI-QD) protocol, which is secure against information leakage, has been propose
I construct a secure multi-party scheme to compute a classical function by a succinct use of a specially designed fault-tolerant random polynomial quantum error correction code. This scheme is secure provided that (asymptotically) strictly greater th
We initiate the study of multi-party computation for classical functionalities (in the plain model) with security against malicious polynomial-time quantum adversaries. We observe that existing techniques readily give a polynomial-round protocol, but
Reliable qubits are difficult to engineer, but standard fault-tolerance schemes use seven or more physical qubits to encode each logical qubit, with still more qubits required for error correction. The large overhead makes it hard to experiment with
In this paper, we present a quantum secure multi-party summation protocol, which allows multiple mutually distrustful parties to securely compute the summation of their secret data. In the presented protocol, a semitrusted third party is introduced t