ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the magnetic field in the GW170817 outflow using H.E.S.S. observations

97   0   0.0 ( 0 )
 نشر من قبل Stefan Ohm
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of the first electromagnetic counterpart to the binary neutron star (BNS) merger remnant GW170817 established the connection between short $gamma$-ray bursts and BNS mergers. It also confirmed the forging of heavy elements in the ejecta (a so-called kilonova) via the r-process nucleosynthesis. The appearance of non-thermal radio and X-ray emission, as well as the brightening, which lasted more than 100 days, were somewhat unexpected. Current theoretical models attempt to explain this temporal behavior as either originating from a relativistic off-axis jet or a kilonova-like outflow. In either scenario, there is some ambiguity regarding how much energy is transported in the non-thermal electrons versus the magnetic field of the emission region. Combining the VLA (radio) and Chandra (X-ray) measurements with observations in the GeV-TeV domain can help break this ambiguity, almost independently of the assumed origin of the emission. Here we report for the first time on deep H.E.S.S. observations of GW170817 / GRB 170817A between 124 and 272 days after the BNS merger with the full H.E.S.S. array of telescopes, as well as on an updated analysis of the prompt (<5 days) observations with the upgraded H.E.S.S. phase-I telescopes. We discuss implications of the H.E.S.S. measurement for the magnetic field in the context of different source scenarios.



قيم البحث

اقرأ أيضاً

77 - E. Troja , L. Piro , G. Ryan 2018
We present our broadband study of GW170817 from radio to hard X-rays, including NuSTAR and Chandra observations up to 165 days after the merger, and a multi-messenger analysis including LIGO constraints. The data are compared with predictions from a wide range of models, providing the first detailed comparison between non-trivial cocoon and jet models. Homogeneous and power-law shaped jets, as well as simple cocoon models are ruled out by the data, while both a Gaussian shaped jet and a cocoon with energy injection can describe the current dataset for a reasonable range of physical parameters, consistent with the typical values derived from short GRB afterglows. We propose that these models can be unambiguously discriminated by future observations measuring the post-peak behaviour, with slope -1.0 for the cocoon and -2.5 for the jet model.
We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3h after GW170817. The H.E.S.S. target se lection identified regions of high probability to find a counterpart of the gravitational wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between $270,mathrm{GeV}$ to $8.55,mathrm{TeV}$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.
Previous observations with HESS have revealed the existence of an extended very-high-energy (VHE; E>100 GeV) gamma-ray source, HESS J1834-087, coincident with the SNR W41. The origin of the gamma-ray emission has been further investigated with HESS a nd the Fermi-LAT. The gamma-ray data provided by 61h (HESS) and 4 yrs (Fermi LAT) of observations cover over 5 decades in energy (1.8GeV - 30TeV). The morphology and spectrum of the TeV and GeV sources have been studied and multi-wavelength data have been used to investigate the origin of the observed emission. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sig_TeV = 0.17{deg}), both centered on SNR W41 and exhibiting spectra described by a power law of index 2.6. The GeV source detected with Fermi is extended (sig_GeV =0.15{deg}) and morphologically matches the VHE emission. Its spectrum can be described by a power-law with index 2.15 and joins smoothly the one of the whole TeV source. A break appears in the spectra around 100 GeV. Two main scenarios are proposed to explain the emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with a molecular cloud. X-ray observations suggest the presence of a point-like source (pulsar candidate) near the center of the SNR and non-thermal X-ray diffuse emission which could arise from a potential PWN. The PWN scenario is supported by the match of of the TeV and GeV positions with the putative pulsar. However, the overall spectrum is reproduced by a 1-zone leptonic model only if an excess of low-energy electrons is injected by a high spin-down power pulsar. This low-energy component is not needed if the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH maser lines and the hadronic modeling.
111 - K. P. Mooley (1 , 2 , 3 2017
GW170817 is the first gravitational wave detection of a binary neutron star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 Mpc. It has been proposed that the observ ed gamma-ray, X-ray and radio emission is due to an ultra-relativistic jet launched during the merger, directed away from our line of sight. The presence of such a jet is predicted from models positing neutron star mergers as the central engines driving short-hard gamma-ray bursts (SGRBs). Here we show that the radio light curve of GW170817 has no direct signature of an off-axis jet afterglow. While we cannot rule out the existence of a jet pointing elsewhere, the observed gamma-rays could not have originated from such a jet. Instead, the radio data requires a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high velocity tail of the neutron-rich material dynamically ejected during the merger or a cocoon of material that breaks out when a jet transfers its energy to the dynamical ejecta. The cocoon scenario can explain the radio light curve of GW170817 as well as the gamma-rays and X-rays (possibly also ultraviolet and optical emission), and hence is the model most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron star mergers, giving rise to a heretofore unidentified population of radio, ultraviolet, X-ray and gamma-ray transients in the local universe.
111 - T. Baug , Ke Wang , Tie Liu 2019
We present a statistical study on the orientation of outflows with respect to large-scale filaments and the magnetic fields. Although filaments are widely observed toward Galactic star-forming regions, the exact role of filaments in star formation is unclear. Studies toward low-mass star-forming regions revealed both preferred and random orientation of outflows respective to the filament long-axes, while outflows in massive star-forming regions mostly oriented perpendicular to the host filaments, and parallel to the magnetic fields at similar physical scales. Here, we explore outflows in a sample of 11 protoclusters in HII regions, a more evolved stage compared to IRDCs, using ALMA CO (3-2) line observations. We identify a total of 105 outflow lobes in these protoclusters. Among the 11 targets, 7 are embedded within parsec-scale filamentary structures detected in $^{13}$CO line and 870 $mu m$ continuum emissions. The angles between outflow axes and corresponding filaments ($gamma_mathrm{Fil}$) do not show any hint of preferred orientations (i.e., orthogonal or parallel as inferred in numerical models) with respect to the position angle of the filaments. Identified outflow lobes are also not correlated with the magnetic fields and Galactic plane position angles. Outflows associated with filaments aligned along the large-scale magnetic fields are also randomly orientated. Our study presents the first statistical results of outflow orientation respective to large-scale filaments and magnetic fields in evolved massive star-forming regions. The random distribution suggests a lack of alignment of outflows with filaments, which may be a result of the evolutionary stage of the clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا